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In the previous lecture. . .

We

Explained the basic working principle of model predictive control

Explained its advantages and drawbacks compared to optimal control and pole
placement
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Learning outcomes

By the end of this lecture, you should be able to. . .
Recognize whether an MPC problem is linear and understand what this implies for
the underlying optimization problem
Know the properties of convex optimization problems
Derive KKT conditions to solve convex constrained optimization problems
Explain the basic idea of interior point methods
Know that the world of nonlinear MPC is huge

Questions during the lecture?
Ask in Presemo: https://presemo.aalto.fi/digoptctrl
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Linear MPC

If the system dynamics are linear, we can formulate a linear MPC
Many real-world systems are nonlinear but we can approximate linearly

Linear MPC example: Temperature control in a room

min
[u0,...,uN−1]>∈IRN

J(x , u) =
N−1∑
k=0

[
(xk − xref)

>Q(xk − xref) + u>k Ruk

]
s.t. xk+1 = Axk + Buk % Linear dynamics

xk ∈ [xmin, xmax] % Box-constraints

uk ∈ [umin, umax] % Box-constraints

Cost function J penalizes deviation from reference temperature xref and heat flow uk

For appropriately chosen weight matrices, the optimization problem is simpler
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Receding horizon

In MPC, we solve this optimization problem at every time step k ∈ [0,N − 1] for the
whole horizon N and only apply the first action→ Receding horizon

Commonly chosen horizon: N ≈ 120
→ 120 optimization variables per time-step

To meet real-time requirements, solving
optimization problems should be simple

Linear MPC
Linear MPC yields convex optimization
problems, which are significantly simpler to
solve than non-convex optimization problems.
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Convexity

x
y

Convex set Ω

x y

Non-convex set Ω

Convex sets
The set Ω is convex if, and only if (iff),
∀x , y ∈ Ω,∀t ∈ [0, 1] : (1− t)x + ty ∈ Ω.

Convex functions
Let Ω be a convex set. Then, a twice-differentiable function f is convex iff the three
equivalent statements hold:

1. f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y), ∀x , y ∈ Ω, ∀t ∈ [0, 1]

2. f (y) ≥ f (x) +
df (x)

dx
(x − y), ∀x , y ∈ Ω

3.
d2f (x)

dx2 ≥ 0, ∀x ∈ Ω
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Interpretation of statements for convex functions

f (tx + (1− t)y) ≤
tf (x) + (1− t)f (y), ∀x , y ∈ Ω,∀t ∈ [0, 1]

f (y) ≥ f (x) +
df (x)

dx
(x − y), ∀x , y ∈ Ω

d2f (x)

dx2 ≥ 0, ∀x ∈ Ω

−1

2

5 x and y

−4
0

4

y f (x) df
dx

−2 −1 0 1 2
−4

0

4

x

f (x) df (x)
dx

d2f (x)
dx2
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Convex unconstrained optimization: Optimality
We consider, without loss of generality, only minimization problems
If we want to maximize a function f , we can equivalently minimize its negation −f

The point x? ∈ IRn is called a local minimizer if
f (x?) ≤ f (x) ∀x ∈ N(x?, ε), where N(x?, ε) is
called an ε-neighborhood around the minimizer x?

The point x? ∈ IRn is called the global minimizer if
f (x?) ≤ f (x) ∀x ∈ IRn

IRn

N(x?, ε)

x?

ε

MPC and optimality
The input trajectory uk is the solution of the optimization problem at any time
step k ∈ [0,N − 1]. A sub-optimal solution, i.e., not the global minimizer, will lead to
sub-optimal operation of the plant and, in the worst case, may cause instability.
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Convex unconstrained optimization

For a differentiable function f : IRn → IR, the gradient evaluated at x ∈ IRn is

∇f (x) =

[
df
dx1

(x), . . . ,
df

dxn
(x)

]>
A point x ∈ IRn is called stationary if ∇f (x) = [0, . . . , 0]> =: 0
For any direction p ∈ IRn, the directional derivative is ∇pf (x) := limη→0

f (x+ηp)−f (x)
η

The directional derivative is a projection of ∇f (x) onto p, i.e., ∇pf (x) = p>∇f (x)
Although MPC requires constrained optimization, unconstrained optimization
serves as the foundation to solve the underlying problem

Theorem 1: Global minimizer of unconstrained convex functions

Let f : IRn → IR be differentiable and convex. Then, x? ∈ IRn is the global minimizer,
i.e., f (x?) ≤ f (x) for all x ∈ IRn, iff ∇f (x?) = 0, i.e., iff x? is a stationary point.
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Proof of Theorem 1: Logic Handwritten

Theorem 1: Global minimizer of unconstrained convex functions

Let f : IRn → IR be differentiable and convex. Then, x? ∈ IRn is the global minimizer,
i.e., f (x?) ≤ f (x) for all x ∈ IRn, iff ∇f (x?) = 0, i.e., iff x? is a stationary point.

Statement A: ∇f (x?) = 0 (stationarity)

Statement B: f (x?) ≤ f (x) ∀x ∈ N(x?, ε) (local minimum)

Statement C: f (x?) ≤ f (x) ∀x ∈ IRn (global minimum)

We want to prove A ⇐⇒ C; Through transitive logical relation of the statements:

A ⇐⇒ C = (A =⇒ C) ∧ (C =⇒ A)

= (A =⇒ C︸ ︷︷ ︸
Lemma 1

) ∧ ((C =⇒ B)︸ ︷︷ ︸
Trivial

∧ (B =⇒ A)︸ ︷︷ ︸
Lemma 2

)
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Proof of Theorem 1: Lemma 1 Handwritten

Lemma 1 (A =⇒ C)

Let f : IRn → IR be differentiable, convex, and ∇f (x?) = 0. Then, f (x?) ≤ f (x), ∀x ∈ IRn.

Proof of Lemma 1

Since f is convex, f (x) ≥ f (y) +∇f (y)>(y− x) ∀x, y ∈ IRn

Choose y = x?: f (x) ≥ f (x?) +∇f (x?)>(x? − x) ∀x ∈ IRn

Since ∇f (x?) = 0, f (x) ≥ f (x?) ∀x ∈ IRn
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Proof of Theorem 1: Lemma 2 Handwritten

Lemma 2 (B =⇒ A)

Let f : IRn → IR be differentiable, convex, and f (x?) ≤ f (x) ∀x ∈ N(x?, ε). Then,
∇f (x?) = 0.

Proof of Lemma 2

Since x? is a local minimizer, f (x? + η · p) ≥ f (x?), ∀η ∈ [0, ε],∀p ∈ IRn

Therefore, 0 ≥ limη→0
f (x?+η·p)−f (x?)

η = ∇f (x?)>p ∀p ∈ IRn

Choose p = −∇f (x?) : ∇f (x?)>p = −∇f (x?)>∇f (x?) =: −‖∇f (x?)‖2
2 ≤ 0

Since ∇f (x?)>p ≥ 0 ∀p and ∇f (x?)>p ≤ 0, p = −∇f (x?) =⇒ ∇f (x?) = 0
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Proof of Theorem 1: Summary
Theorem 1: Global minimizer of unconstrained convex functions

Let f : IRn → IR be differentiable and convex. Then, x? ∈ IRn is the global minimizer,
i.e., f (x?) ≤ f (x) for all x ∈ IRn, iff ∇f (x?) = 0, i.e., iff x? is a stationary point.

Proof of Theorem 1 (sketch)

Lemma 1: If x? ∈ IRn is a stationary point, then x? is a global minimizer

Trivial: If x? ∈ IRn is a global minimizer, then x? ∈ IRn is a local minimizer

Lemma 2: If x? ∈ IRn is a local minimizer, then x? is a stationary point

First order necessary conditions are necessary and sufficient

Every local minimum is a global minimum

These are properties that distinguish convex and non-convex optimization
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Convex constrained optimization problem
The optimization problem of MPC is a constrained optimization problem
Equality constraints through initial condition and system dynamics
Inequality constraints through constraints on input and state (box constraints)

minx∈IRn f (x) subject to ci(x) ≤ 0 ∀i ∈ I, ci(x) = 0 ∀i ∈ E
Inequality constraints ci , i ∈ I ⊆ IN, equality constraints ci , i ∈ E ⊆ IN
Equivalent formulation by defining the feasible domain Ω:

minx∈Ω f (x), Ω := {x ∈ IRn : ci(x) ≤ 0 ∀i ∈ I ∩ ci(x) = 0 ∀i ∈ E}

Definition: Convex constrained optimization problem
A constrained optimization problem is convex iff the objective function f is convex and
the resulting feasible domain Ω is convex, i.e., the equality constraints are linear and
the inequality constraints are convex.
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Stationarity for convex constrained optimization problems

Stationarity condition ∇f (x?) is necessary and sufficient condition for x? being a
global minimizer for convex unconstrained optimization
Unfortunately, this does not (directly) translate to the constrained case
Example: minx∈Ω x2, Ω := [−2,−0.5], where ∇f (0) = 0 but 0 6∈ Ω

−2 −1 0 1 2
0
1
2
3
4

x

f(
x)

=
x2

Stationary point ∇f (x) = 0
Feasible domain Ω Stationarity conditions

Which stationarity conditions are fulfilled at
the solution of constrained optimization
problems?
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Stationarity with single equality constraint (graphical)
Stationarity conditions
Which stationarity conditions are fulfilled at the solution of constrained optimization?

minx∈IR2 x1 + x2, subject to x2
1 + x2

2 − 2 = 0

−1 0 1

−1

0

1

−
2.3

−
1.7

−
1.2

−
0.7

−
0.2

0.3

0.8

1.3
1.8

2.3

∇f (x)

∇f (x)

∇c(x)

∇c(x) ∇c(x)

∇c(x)

∇f (x)

∇f (x)

x1

x 2

f (x) = x1 + x2 =⇒ ∇f (x) = [1, 1]>

c(x) = x2
1 + x2

2 − 2 =⇒ ∇c(x) = [2x1, 2x2]>

Equivalent: c(x) = −x2
1 − x2

2 + 2 (sign-switch)

At global minimum x? = [−1,−1]>, gradients
∇f (x) and ∇c(x) are parallel; the sign of λ does
not matter because of the equivalent sign-switch

∇f (x) + λ∇c(x)
!

= 0, λ ∈ IR
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Stationarity with single equality constraint (mathematical)
A feasible point x? is not optimal if there exists a step in direction p such that
feasibility is retained and the value of the objective is decreased

Feasibility
Convex feasible set ⇐⇒ linear constraints: c(x? + p) = c(x?) +∇c(x?)>p
To remain feasible: c(x? + p) = 0⇒ ∇c(x?)>p = 0 since c(x?) = 0

Decreasing value of objective function
Decrease in the objective function obtained in descent direction p s.t. ∇f (x?)>p < 0

Optimality Handwritten

At the optimum x?, for any p with
∇c(x)>p = 0 (orthogonality), we need
∇f (x?)>p ≥ 0 (⇐⇒ ∇f (x?)>p = 0)

∇f (x) + λ∇c(x)
!

= 0, λ ∈ IR −1−0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2

∇c(x) p
∇f (x)
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Stationarity with equality constraints (summary)
For one equality constraint, we require. . .

∇f (x) + λ∇c(x)
!

= 0, λ ∈ IR

For multiple equality constraints, we require. . .

∇f (x) +
∑

i∈E λi∇ci(x)
!

= 0, λi ∈ IR

First-order necessary conditions (equality constraints)

∇f (x) +
∑
i∈E

λi∇ci(x) = 0 % Stationarity

ci(x) = 0, ∀i ∈ E % Primal feasibility
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Stationarity with single inequality constraint (graphical)

minx∈IR2 x1 + x2, subject to x2
1 + x2

2 − 2 ≤ 0

−1 0 1

−1

0

1

−
2.3

−
1.7

−
1.2

−
0.7

−
0.2

0.3

0.8

1.3
1.8

2.3

∇f (x)

∇f (x)

∇c(x)

∇c(x) ∇c(x)

∇c(x)

∇f (x)

∇f (x)

x1

x 2

f (x) = x1 + x2 =⇒ ∇f (x) = [1, 1]>

c(x) = x2
1 + x2

2 − 2 =⇒ ∇c(x) = [2x1, 2x2]>

In constrast to equality constraints, a sign-switch of
inequality constraints is not equivalent

At global minimum x? = [−1,−1]>, gradient of
objective function ∇f (x) and of constraint ∇c(x)
are parallel and show in opposite directions

∇f (x) + µ∇c(x)
!

= 0, µ ≥ 0
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Stationarity with single inequality constraint (mathematical)
A feasible point x? is not optimal if there exists a step in direction p such that
feasibility is retained and the value of the objective is decreased

Feasibility
c(x? + p) = c(x?) +∇c(x?)>p +O(p>p) = c(x?) +∇c(x?)>p for sufficiently small p
To remain feasible: 0 ≥ c(x? + p) = c(x?) +∇c(x?)>p

Decreasing value of objective function
Decrease in the objective function obtained in descent direction p s.t. ∇f (x?)>p < 0

Optimality Handwritten
If c(x?) < 0 (inequality constraint is inactive). . . =⇒ ∇f (x?)

!
= 0

c(x? + p) ≤ 0 is always satisfied for sufficiently small p
∇f (x?)>p 6< 0 if ∇f (x?) = 0

If c(x?) = 0 (inequality constraint is active). . . =⇒ ∇f (x?) + µ∇c(x?)
!

= 0, µ ≥ 0
0 ≥ c(x? + p) = c(x?) +∇c(x?)>p = ∇c(x?)>p
∇f (x?)>p 6< 0 if ∇f (x?) + µc(x?) = 0, µ ≥ 0 (parallelity in opposite directions)
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Complementary slackness of inequalities
If c(x?) < 0 (inequality constraint is inactive) =⇒ ∇f (x?)

!
= 0

If c(x?) = 0 (inequality constraint is active). . . =⇒ ∇f (x) + µ∇c(x)
!

= 0, µ ≥ 0
This if-else relationship is achieved with. . .

∇f (x) + µc(x) = 0 % Stationarity

µ ≥ 0 % Dual feasibility

µc(x) = 0 % Complementary slackness

Vista: Complementary slackness is non-smooth constraint, making it difficult for
numerical solvers
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Stationarity with inequality constraints (summary)
First-order necessary conditions (single inequality constraint)

∇f (x) + µ∇c(x) = 0 % Stationarity

c(x) ≤ 0 % Primal feasibility

µ ≥ 0 % Dual feasibility

µc(x) = 0 % Complementary slackness

First-order necessary conditions (multiple inequality constraints)
∇f (x) +

∑
i∈Iµi∇ci(x) = 0 % Stationarity

ci(x) ≤ 0, ∀i ∈ I % Primal feasibility

µi ≥ 0, ∀i ∈ I % Dual feasibility

µici(x) = 0 % Complementary slackness
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Karush-Kahn-Tucker (KKT) conditions

Theorem 2: KKT conditions

Let f : IRn → IR be a differentiable and convex objective function. Let the constraints
ci(x) = 0∀i ∈ E and ci(x) ≤ 0∀i ∈ I cause a convex feasible domain and additionally
have certain regularity properties. Then, x ∈ IRn is the global optimum of the
constrained minimization problem with corresponding multipliers λ?,µ? iff:

∇f (x?) +
∑

i∈Eλ
?
i ∇ci(x) +

∑
i∈Iµ

?
i ∇ci(x) = 0 % Stationarity

ci(x) = 0, ∀i ∈ E % Primal feasibility

ci(x) ≤ 0, ∀i ∈ I % Primal feasibility

µ?i ≥ 0, ∀i ∈ I % Dual feasibility

µ?i ci(x) = 0 % Complementary slackness
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Optimization methods

We have derived the KKT conditions, which are necessary and sufficient
conditions for the global minimizer of convex constrained problems like the one of
linear MPC

In linear MPC, we solve a convex optimization problem at every time-step and require
the global minimum for, e.g., performance guarantees

How do solvers find the global minimizer at each time-step in practice?

qpOASES:1 Solver based on active-set methods, which have exponential runtime (in
the worst case)

IPOPT:2 Solver based on interior point-methods, which have polynomial runtime
1Ferreau et al. “qpOASES: A parametric active-set algorithm for quadratic programming,” 2014.
2Wächter et al., “On the implementation of an interior-point filter line-search algorithm for large-
scale nonlinear programming,” 2006.
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Interior point methods

Interior point methods move along the interior of the feasible domain to find global
the minimum x?

They can be seen as a numerical way to solve KKT conditions
Main numerical challenge for solvers is the complementary slackness µici(x) = 0

Complementary slackness results in a corner with no
interior→ non-smooth constraint

This non-smooth constraint is extremely challenging to
handle for numerical solvers

µi

ci(x)

Algorithms based on interior point methods

How can an algoritm converge to the solution of the KKT conditions and circumvent the
issue caused by the complementary slackness?
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Algorithms based on interior point methods Handwritten

Instead of µc(x) = 0, we require µc(x) = τ, τ > 0

Example: Start with τ = 0.01, then τ = 0.001, continue
decreasing τ → 0 iteratively

µ

c(x)

Another technique of interior point methods is to replace inequality constraints by a
logarithmic barrier in the objective function: Instead of minx∈IRn f (x) s.t. c(x) ≤ 0,
we solve minx∈IRn f (x)− τ log(−c(x))

Since log(·) is only defined for positive arguments, we enforce c(x) < 0, i.e., we stay
in the interior of the feasible domain
Larger τ causes smaller values of c(x), whereas smaller τ enables c(x)→ 0
The solution path for decreasing τ is called the central path and is guaranteed to
converge to the KKT conditions (under suitable assumptions)
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Nonlinear MPC

Recap:
If the system dynamics are linear, we can formulate a linear MPC
Many real-world systems are nonlinear but we could approximate linearly
Linear MPC yields convex optimization problems, which are simpler to solve, thus
satisfying real-time requirements for systems with high sampling rates

However, most MPC formulations remain nonlinear because:
System dynamics are too nonlinear to approximate linearly
Simple approximations of the dynamics would lead to losing closed-loop
guarantees of MPC like stability, recursive feasibility, and constraint satisfaction

Nonlinear MPC
Nonlinear MPC yields a nonlinear program (NLP), which requires the solution of a
non-convex optimization problem.
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Approximate nonlinear MPC
Non-convex optimization
"The great watershed in optimization isn’t between linearity and nonlinearity, but convexity
and nonconvexity," Rockafellar, Convex Analysis, 1970.

In non-convex optimization problems, we can have local minima that are not the
global minimum→ KKT conditions are necessary but not sufficient anymore

For nonlinear MPC, instead of approximating the system dynamics, we can directly
approximate the solution of the NLP, i.e., the implicitly defined control law u = g(x)

Problem definition: Compute explicit function h that approximates g with
|h(x)− g(x)| ≤ ε,∀x ∈ Ω,∀ε > 0

ALKIA-X:3 yielding fast-to-evaluate nonlinear MPC with performance guarantees
3A. Tokmak, C. Fiedler, M. N. Zeilinger, S. Trimpe, J. Köhler, “Automatic nonlinear MPC approxima-
tion with closed-loop guarantees,” IEEE Transactions on Automatic Control (submitted), 2024.
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Learning outcomes

By the end of this lecture, you should be able to. . .

Recognize whether an MPC problem is linear and understand what this implies for
the underlying optimization problem

Know the properties of convex optimization problems

Derive KKT conditions to solve convex constrained optimization problems

Explain the basic idea of interior point methods

Know that the world of nonlinear MPC is huge
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Exam

Content: the second part of the course (state-space representations, stability
analysis, controllability, observability, pole placement, optimal control, stochastic
optimal control, model predictive control, convex optimization)

As in the previous exam, we will have calculation exercises and some where you
need to explain something

A calculator is not allowed (and not needed)

You can use either the databook provided in MyCourses without annotations or
added formulas or a handwritten, one-sided A4 page on which you can write
whatever you feel might help you during the exam

We will collect the sheets/databooks after the exams—please stick to the rules!

The exam will be Tuesday, 3.12., AS2, 13:00 – 16:00
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Feedback

Feedback
Please leave some feedback for today’s lecture: https://presemo.aalto.fi/digoptctrl
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