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Contribution

Safe Bayesian optimization (BO) algorithms may be restrictive in practice since they require homoscedastic sub-Gaussian observation noise. We propose a straightforward yet rigorous
framework for safe BO that works across noise models, including homoscedastic sub-Gaussian and heteroscedastic heavy-tailed distributions. Hence, we cover a broader noise spectrum [1].

State of the art assumption. The observation noise ϵt is

homoscedastic R-sub-Gaussian distribution.
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Our assumption. The observation noise ϵt is defined on the

probability space (Ω,F ,P), from which we can sample.
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Starting from the initial safe set, we sequentially gather samples to maximize the unknown ground truth while guaranteeing safety under heteroscedastic heavy-tailed observation noise. The state of the art
(left) can only handle homoscedastic sub-Gaussian noise, which causes safety violations. Our safe BO algorithm (right) works across noise models and remains safe by exploring conservatively. In practice, the
unknown ground truth may be a reward function mapping control parameters to their performance, while safety violations may correspond to experiments that yield hardware damage or harm the environment.

Introduction

Safe BO algorithms (SafeOpt [2, 3]) only consider homoscedastic sub-Gaussian noise

Modeling network delays or observation noise of radar/LiDAR sensors ⇒ heavy-tailed

Reinforcement learning/parameter tuning: noise depends on input ⇒ heteroscedastic

Problem definition

We use safe BO with Gaussian processes (GPs) to maximize reward f of safety-critical systems

Kernel k: GP mean µt, standard deviation σt, covariance matrix Kt, RKHS norm ∥f∥k
Confidence intervals bound difference between reward f and η-regularized GP mean µt

|f (a)− µt(a)| ≤
(
∥f∥k +

√
1/η∥ϵ1:t∥Ξt

)
· σt(a), Ξt := Kt(Kt + ηIt)

−1 (1)

State of the art [4]: Assume sub-Gaussian ϵt to bound ∥ϵ1:t∥Ξt
with high probability

How can we bound ∥ϵ1:t∥Ξt
across noise models without relying on sub-Gaussianity?

Data-driven aleatoric uncertainty quantification via scenario approach [5]

Assumption: Observation noise ϵt is defined on the probability space (Ω,F ,P)
To bound ϵt w.h.p., generate mt i.i.d. scenarios ϵ̃

(j)
t from (Ω,F ,P) ⇒ ϵ̄t := maxj∈[1,mt] ϵ̃

(j)
t

If mt s.t. (1− ν)mt ≤ κt with ν, κt ∈ (0, 1), then Pmt[V (ϵ̄t) > ν] ≤ κt, V (ϵ̄t) := P[ϵ̄t < |ϵt|]

Noise bounds that hold simultaneously for all iterations t ≥ 1

Confidence level κ ∈ (0, 1) ⇒ κt :=
6κ
π2t2 , product probability measure P̃ := ⊗∞

t=1 ⊗
mt

j=1 P
P̃[∀t ≥ 1 : V (ϵ̄t) > ν] ≤

∑∞
t=1 P̃[V (ϵ̄t) > ν] ≤

∑∞
t=1 κt =

∑∞
t=1

6κ
π2t2 =

6κ
π2 · π

2

6 = κ

Theorem 1: Scenario-based confidence intervals
Suppose:

Observation noise ϵt is defined on (Ω,F ,P), from which we can sample

Reward function f is a member of the RKHS of kernel k with known ∥f∥k
Then, with confidence at least 1− κ (under P̃) and probability at least 1− ν (under P):

|f (a)− µt(a)| ≤
(
∥f∥k +

√
λmax(Ξt)/η∥ϵ̄1:t∥2

)
· σt(a) (2)

Proof (idea):

Take confidence intervals (1) and probabilistically bound ∥ϵ1:t∥Ξt
using scenario approach

∥ϵ1:t∥Ξt
≤
√

λmax(Ξt)∥ϵ1:t∥2 (deterministically) ⇒ ∥ϵ1:t∥Ξt
≤
√

λmax(Ξt)∥ϵ̄1:t∥2 (w.h.p.)

Theorem 2: Safe and optimal BO algorithm

Suppose:

Hypotheses of Theorem 1 hold

Nonempty initial set of safe policy parameters is given

Then, our safe BO algorithm with confidence intervals (2) safely finds the reachable optimum.

Synthetic experiments
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Classic safe BO
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Our algorithm

Our algorithm (right) exhibits similar performance to classic safe BO algorithms (left) under
sub-Gaussian measurement noise, working with more general noise assumptions

Our algorithm remain safe while classic safe BO algorithms fail under heteroscedastic
heavy-tailed noise (see Contribution)

Control parameter tuning on the Franka Emika robot

Experiment setup

Starting position End position

Safe exploration of the domain to find the reachable optimum
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LQR parameter tuning to improve set-point tracking performance of the Franka Emika robot

Starting from low-performing policy (white diamond), identify optimal policy (white star)

Continuous reward improvement while only conducting safe experiments

Conclusion

We assume that the observation noise lives on a probability
space (Ω,F ,P) from which we can sample.

We bound observation noise from homoscedastic sub-Gaussian and
heteroscedastic heavy-tailed distributions via scenario approach.

We develop high probability confidence intervals (Theorem 1) and
prove that our safe BO algorithm remains safe and finds the safely
reachable optimum (Theorem 2).
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