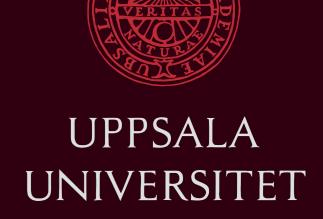
Safe Bayesian optimization across noise models: A practical and unified framework

Abdullah Tokmak ¹ Thomas B. Schön ² Dominik Baumann ^{1,2}

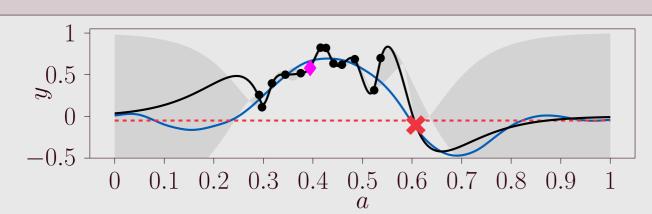
¹Aalto University, Finland ²Uppsala University, Sweden



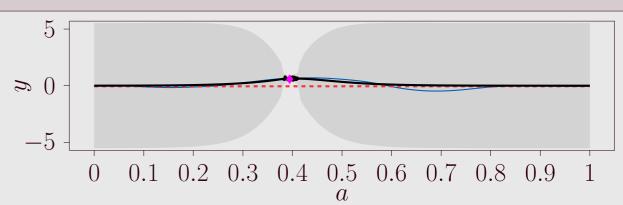
Contribution

Safe Bayesian optimization (BO) algorithms may be restrictive in practice since they require homoscedastic sub-Gaussian observation noise. We propose a straightforward yet rigorous framework for safe BO that works across noise models, including homoscedastic sub-Gaussian and heteroscedastic heavy-tailed distributions. Hence, we cover a broader noise spectrum [1].

State of the art assumption. The observation noise ϵ_t is homoscedastic R-sub-Gaussian distribution.



Our assumption. The observation noise ϵ_t is defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, from which we can sample.



Starting from the initial safe set, we sequentially gather samples to maximize the unknown ground truth while guaranteeing safety under heteroscedastic heavy-tailed observation noise. The state of the art (left) can only handle homoscedastic sub-Gaussian noise, which causes safety violations. Our safe BO algorithm (right) works across noise models and remains safe by exploring conservatively. In practice, the unknown ground truth may be a reward function mapping control parameters to their performance, while safety violations may correspond to experiments that yield hardware damage or harm the environment.

Introduction

- Safe BO algorithms (SAFEOPT [2, 3]) only consider homoscedastic sub-Gaussian noise
- Modeling network delays or observation noise of radar/LiDAR sensors ⇒ heavy-tailed
- Reinforcement learning/parameter tuning: noise depends on input \Rightarrow heteroscedastic

Problem definition

- We use safe BO with Gaussian processes (GPs) to maximize reward f of safety-critical systems
- Kernel k: GP mean μ_t , standard deviation σ_t , covariance matrix K_t , RKHS norm $||f||_k$
- Confidence intervals bound difference between reward f and η -regularized GP mean μ_t

$$|f(a) - \mu_t(a)| \le \left(||f||_k + \sqrt{1/\eta} ||\epsilon_{1:t}||_{\Xi_t} \right) \cdot \sigma_t(a), \quad \Xi_t := K_t (K_t + \eta I_t)^{-1}$$
 (1)

State of the art [4]: **Assume sub-Gaussian** ϵ_t to bound $\|\epsilon_{1:t}\|_{\Xi_t}$ with high probability How can we bound $\|\epsilon_{1:t}\|_{\Xi_t}$ across noise models without relying on sub-Gaussianity?

Data-driven aleatoric uncertainty quantification via scenario approach [5]

- **Assumption:** Observation noise ϵ_t is defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- To bound ϵ_t w.h.p., generate m_t i.i.d. **scenarios** $\tilde{\epsilon}_t^{(j)}$ from $(\Omega, \mathcal{F}, \mathbb{P}) \Rightarrow \bar{\epsilon}_t \coloneqq \max_{j \in [1, m_t]} \tilde{\epsilon}_t^{(j)}$
- If m_t s.t. $(1-\nu)^{m_t} \leq \kappa_t$ with $\nu, \kappa_t \in (0,1)$, then $\mathbb{P}^{m_t}[V(\bar{\epsilon}_t) > \nu] \leq \kappa_t$, $V(\bar{\epsilon}_t) \coloneqq \mathbb{P}[\bar{\epsilon}_t < |\epsilon_t|]$

Noise bounds that hold simultaneously for all iterations $t \geq 1$

- Confidence level $\kappa \in (0,1) \Rightarrow \kappa_t \coloneqq \frac{6\kappa}{\pi^2 t^2}$, product probability measure $\tilde{\mathbb{P}} \coloneqq \bigotimes_{t=1}^{\infty} \bigotimes_{j=1}^{m_t} \mathbb{P}$
- $\widetilde{\mathbb{P}}[\forall t \ge 1 : V(\bar{\epsilon}_t) > \nu] \le \sum_{t=1}^{\infty} \widetilde{\mathbb{P}}[V(\bar{\epsilon}_t) > \nu] \le \sum_{t=1}^{\infty} \kappa_t = \sum_{t=1}^{\infty} \frac{6\kappa}{\pi^2 t^2} = \frac{6\kappa}{\pi^2} \cdot \frac{\pi^2}{6} = \kappa \quad \Box$

Theorem 1: Scenario-based confidence intervals

Suppose:

- Observation noise ϵ_t is defined on $(\Omega, \mathcal{F}, \mathbb{P})$, from which we can sample
- Reward function f is a member of the RKHS of kernel k with known $||f||_k$

Then, with confidence at least $1-\kappa$ (under \mathbb{P}) and probability at least $1-\nu$ (under \mathbb{P}):

$$|f(a) - \mu_t(a)| \le \left(||f||_k + \sqrt{\lambda_{\max}(\Xi_t)/\eta} ||\overline{\epsilon}_{1:t}||_2 \right) \cdot \sigma_t(a)$$
(2)

Proof (idea).

- Take confidence intervals (1) and probabilistically bound $\|\epsilon_{1:t}\|_{\Xi_t}$ using scenario approach

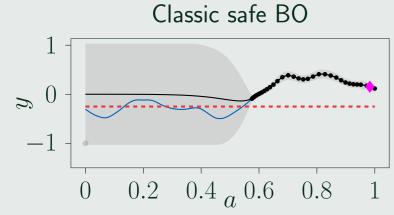
Theorem 2: Safe and optimal BO algorithm

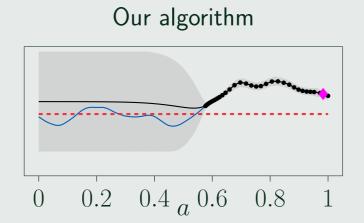
Suppose:

- Hypotheses of Theorem 1 hold
- Nonempty initial set of safe policy parameters is given

Then, our safe BO algorithm with confidence intervals (2) safely finds the reachable optimum.

Synthetic experiments

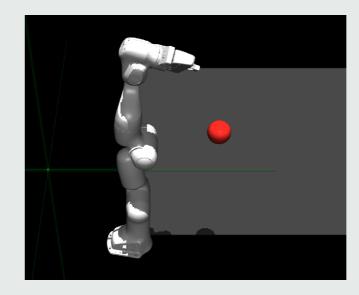


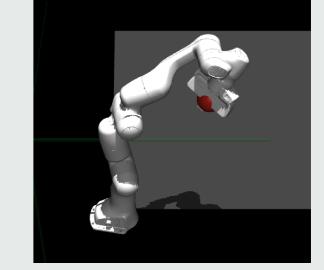


- Our algorithm (right) exhibits **similar performance** to classic safe BO algorithms (left) under sub-Gaussian measurement noise, working with more general noise assumptions
- Our algorithm remain **safe** while classic safe BO algorithms fail under heteroscedastic heavy-tailed noise (see Contribution)

Control parameter tuning on the Franka Emika robot

Experiment setup

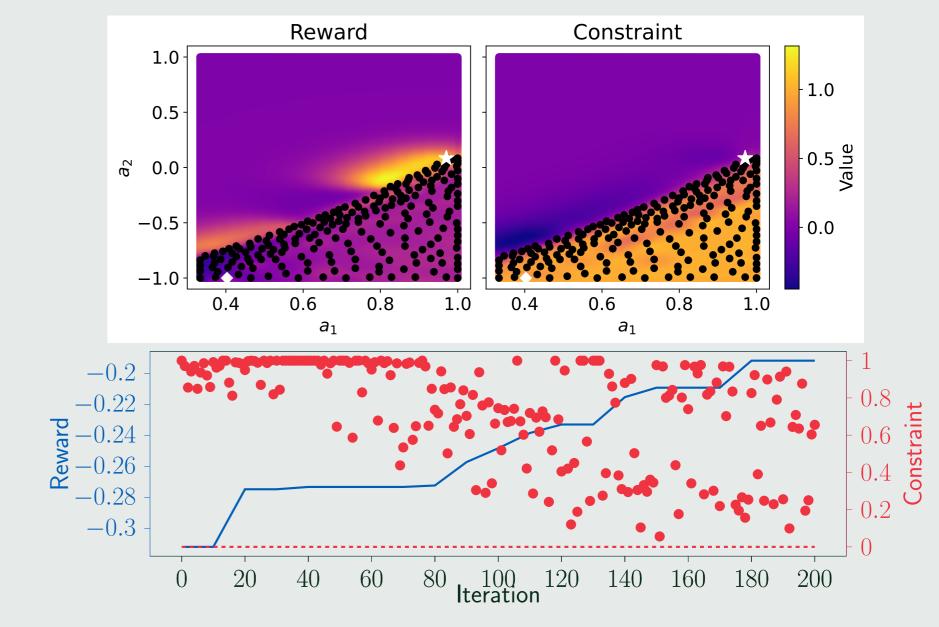




Starting position

End position

Safe exploration of the domain to find the reachable optimum



- LQR parameter tuning to improve set-point tracking performance of the Franka Emika robot
- Starting from low-performing policy (white diamond), identify optimal policy (white star)
- Continuous reward improvement while only conducting safe experiments

Conclusion

- We assume that the observation noise lives on a probability **space** $(\Omega, \mathcal{F}, \mathbb{P})$ from which we can sample.
- We bound observation noise from homoscedastic sub-Gaussian and heteroscedastic heavy-tailed distributions via scenario approach.
- We develop high probability confidence intervals (Theorem 1) and prove that our safe BO algorithm remains safe and finds the safely reachable optimum (Theorem 2).

References

- A. Tokmak, T. B. Schön, and D. Baumann. "Safe Bayesian optimization across noise models: A practical and unified framework". under review for IEEE L-CSS and ACC. 2025.
- [2] Y. Sui, A. Gotovos, J. Burdick, and A. Krause. "Safe exploration for optimization with Gaussian processes". In: International Conference on Machine Learning. 2015.
- F. Berkenkamp, A. Krause, and A. P. Schoellig. "Bayesian optimization with safety constraints: Safe and automatic parameter tuning in robotics". In: Machine Learning (2023).
- S. R. Chowdhury and A. Gopalan. "On kernelized multi-armed bandits". In: International Conference on Machine Learning. 2017.
- M. C. Campi and S. Garatti. Introduction to the scenario approach. SIAM, 2018.