

PACSBO: Probably approximately correct safe Bayesian optimization

Al Day 2024

Abdullah Tokmak^{1,2}

¹ Aalto University, Espoo, Finland ² Uppsala University, Uppsala, Sweden Aalto University School of Electrical Engineering

October 21, 2024

Motivational example

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

- Unknown reward function $f: A \to \mathbb{R}$
- Control policy parameters $a \in A$
- We require sample efficiency and safety guarantees

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

- Unknown reward function $f: A \to \mathbb{R}$
- Control policy parameters $a \in A$
- We require sample efficiency and safety guarantees

Solvable using classic reinforcement learning (RL)?

Classic RL struggles with both sample efficiency and safety guarantees.

- GPs to model unknown reward function *f* from samples
- GP characterized by kernel k: Mean prediction μ_t , standard deviation σ_t

- GPs to model unknown reward function *f* from samples
- lacktriangleq GP characterized by **kernel** k: **Mean prediction** μ_t , **standard deviation** σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k.

- GPs to model unknown reward function *f* from samples
- lacktriangle GP characterized by **kernel** k: **Mean prediction** μ_t , **standard deviation** σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k.

Regularity assumption

An upper bound B on the RKHS norm $||f||_k$, i.e., $B \ge ||f||_k$, is known a priori.

- GPs to model unknown reward function *f* from samples
- lacktriangle GP characterized by **kernel** k: **Mean prediction** μ_t , **standard deviation** σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k.

Regularity assumption

An upper bound B on the RKHS norm $||f||_k$, i.e., $B \ge ||f||_k$, is known a priori.

$$|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \sigma_t(a)$$

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \ge h$

GP confidence intervals

 $|f(a) - \mu_t(a)| \le (B + \text{"data-term"}) \sigma_t(a)$

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

5/13

Control policy optimization problem

$$\max_{a \in \mathcal{A}} f(a)$$
 subject to $f(a) \geq h$

$$|f(a) - \mu_t(a)| \le (B + \text{``data-term"}) \sigma_t(a)$$

SAFEOPT¹ (
$$t = 0, B = ||f||_k$$
)

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \geq h$

 $|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \sigma_t(a)$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

¹Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \geq h$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

$$|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \sigma_t(a)$$

$$\mathsf{SAFEOPT}^1\ (t=0,\,B<\|f\|_k)$$

¹Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \geq h$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

$$|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \, \sigma_t(a)$$

$$\mathsf{SAFEOPT}^1 \; (t=30,\, B<\|f\|_k)$$

¹Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

Regularity assumption

Most safe BO algorithms require an upper bound *B* on the RKHS norm ($B \ge ||f||_k$) a priori.

■ RKHS norm $||f||_k$ characterizes "smoothness" of function f

Regularity assumption

Most safe BO algorithms require an upper bound *B* on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality

Regularity assumption

Most safe BO algorithms require an upper bound *B* on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality
- It is unclear how to upper bound the RKHS norm of unknown functions

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality
- It is unclear how to upper bound the RKHS norm of unknown functions

Problem definition

Develop a safe BO algorithm that over-estimates the RKHS norm $||f||_k$ with statistical guarantees.

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

Increasing sampling density: $\rho_{t,i}, \|\rho_{t,i}\|_{k} \to f, \|f\|_{k}$

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

■ Increasing sampling density: $\rho_{t,i}$, $\|\rho_{t,i}\|_k \to f$, $\|f\|_k$

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

Increasing sampling density: $\rho_{t,i}, \|\rho_{t,i}\|_{k} \to f, \|f\|_{k}$

Statistical guarantees

Regularity assumptions

- \blacksquare Reward function f is a member of the RKHS of kernel k
- $\blacksquare \|f\|_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s \|\rho_{t,j}\|_k$

 $^{^2}$ W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

Statistical guarantees

Regularity assumptions

- \blacksquare Reward function f is a member of the RKHS of kernel k
- $\blacksquare \|f\|_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s \|\rho_{t,j}\|_k$

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is probably approximate correct (PAC) $\forall t \ge 1$.

 $^{^2}$ W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

8/13

Statistical guarantees

Regularity assumptions

- Reward function f is a member of the RKHS of kernel k

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is probably approximate correct (PAC) $\forall t \ge 1$.

Proof sketch

- $B_t \leftarrow \frac{1}{m} \sum_{j=1}^m \|\rho_{t,j}\|_k + \text{"safety-term"}$
- Statistical guarantees through Hoeffding's inequality³

 $^{^2}$ W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

Local interpretation of the RKHS norm

Safe exploration for optimization: Restricted to sub-space of domain

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term''}) \sigma_t(a)$$

Local interpretation of the RKHS norm

Safe exploration for optimization: Restricted to sub-space of domain

Exploit local "smoothness" to allow for more optimistic exploration

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term''}) \, \sigma_t(a)$$

Local interpretation of the RKHS norm

Safe exploration for optimization: Restricted to sub-space of domain

Exploit local "smoothness" to allow for more optimistic exploration

Implementation: Three sub-domains around the convex hull of samples

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term''}) \, \sigma_t(a)$$

PACSBO

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with guarantees.

PACSBO

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with guarantees.

PACSBO: Probably approximately correct safe Bayesian optimization

- Data-driven RKHS norm over-estimation with PAC bounds
- Local interpretation of the RKHS norm

Numerical experiments

Numerical experiments

Hardware experiment

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with statistical guarantees.

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with statistical guarantees.

Contributions

- Abdullah Tokmak, Thomas B. Schön, Dominik Baumann, "PACSBO: Probably approximately correct safe Bayesian optimization," In Symposium on Systems Theory in Data and Optimization, 2024.
- Abdullah Tokmak, Kiran G. Krishnan, Thomas B. Schön, Dominik Baumann, "Safe exploration in reproducing kernel Hilbert spaces," submitted to AISTATS 2025.

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with statistical guarantees.

Contributions

- Abdullah Tokmak, Thomas B. Schön, Dominik Baumann, "PACSBO: Probably approximately correct safe Bayesian optimization," In Symposium on Systems Theory in Data and Optimization, 2024.
- Abdullah Tokmak, Kiran G. Krishnan, Thomas B. Schön, Dominik Baumann, "Safe exploration in reproducing kernel Hilbert spaces," submitted to AISTATS 2025

Prepri