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1Aalto University, Finland 2RWTH Aachen University, Germany 3ETH Zurich, Switzerland

Proposed framework [1]

Robust MPC

Closed-loop guarantees for disturbances on
control input bounded by ϵ

ALKIA-X

Automatic computation of approximate MPC

Uniform approximation error bounded by ϵ (Theorem 1)

Approximate MPC

Fast-to-evaluate controller

Closed-loop guarantees (Corollary 1)

User-defined

bound ϵ

Samples of

MPC

Approximating

function

We consider a robust model predictive control (MPC) formulation, which is designed such that the desired closed-loop guarantees remain valid until input disturbances below a user-chosen error bound ϵ > 0.
By approximating the feedback law implicitly defined by this MPC up to a tolerance ϵ, the approximate MPC preserves all control-theoretic guarantees induced by the MPC. Hence, approximating the MPC can
be cast as a function approximation problem by sampling state and corresponding optimal inputs obtained by solving the MPC offline. To address this function approximation problem, we propose Alkia-x,
the Adaptive and Localized Kernel Interpolation Algorithm with eXtrapolated reproducing kernel Hilbert space (RKHS) norm. Alkia-x automatically computes an explicit function that approximates the
MPC with a uniform approximation error ϵ, resulting in a cheap-to-evaluate approximate MPC with guarantees on stability and constraint satisfaction.

Introduction

Nonlinear MPC is computationally expensive but we require fast evaluation

Explicit MPC approaches: Mostly for linear MPC or without closed-loop guarantees

Related work: Nonlinear MPC approximation with closed-loop guarantees [2]

Construct MPC that is robust w.r.t. input disturbances bounded by ϵ

Sample MPC law f : X ⊆ Rn → R and learn approximation h: X ⊆ Rn → R offline with NNs

Closed-loop guarantees on approximate MPC h if:

|f (x)− h(x)| ≤ ϵ ∀x ∈ X (1)

Problem: Guaranteeing (1) for NNs is nontrivial and iterative

Solving (1) using kernel interpolation

Assume f is in reproducing kernel Hilbert space (RKHS) of kernel k

Kernel interpolation yields error bounds with RKHS norm ∥f∥k and power function PX [3]:

|f (x)− h(x)| ≤ PX(x)∥f∥k ∀x ∈ X (2)

ALKIA-X

Properties

(P1). Fast-to-evaluate approximating function;

(P2). Guaranteed satisfaction of (1);

(P3). Bound on worst-case number of required samples;

(P4). Automatic and non-iterative algorithm with well-conditioned computations.

Tools

(T1). Localized kernel interpolation;

(T2). Adaptive sub-domain partitioning;

(T3). RKHS norm extrapolation.

Localized kernel interpolation (T1)

Kernels methods have scalability issues with more samples

Approach based on local cubes: Localized approximating
function that only uses samples within corresponding cube

Piecewise-defined approximating function

⇓
Online tree search and
local kernel evaluation

⇓
Fast-to-evaluate
approximating
function (P1)

⇓
Guaranteed satisfaction
of error bound (P2) h3 h2

h1 h4

Adaptive sub-domain partitioning (T2)

Introduce maximum number of samples per domain

More samples required → partition to sub-domains and
reduce length scale accordingly

Localized kernel interpolation on each sub-domain

⇓
Sample complexity

bounds (P3)

⇓
Well-conditioned
computations (P4)

RKHS norm extrapolation (T3)

We require RKHS norm ∥f∥k to bound (2)

Oracle assumption on RKHS norm is restrictive

Exponential function to extrapolate ∥h∥k
Heuristic: Limit upper-bounds ∥f∥k

⇓
Automatic and implementable algorithm (P4)
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Theorem 1: ALKIA-X
Suppose:

Regularity assumptions on kernel k

RKHS norm extrapolation heuristic holds

Then:

Alkia-x terminates after finite number of samples

Resulting approximation h satisfies (1), i .e., approximation error is uniformly bounded by ϵ

Further suppose k is the SE-kernel, then:

Offline computational complexity: O
((√

n∥f∥k
ϵ

)n)
Online computational complexity O

(
log2

(√
n∥f∥k
ϵ

))
Corollary 1: Closed-loop guarantees for approximate MPC
Suppose:

Hypotheses of Theorem 1 hold

MPC is robust w.r.t. input disturbances bounded by ϵ

Then, Alkia-x yields an approximate controller that inherits closed-loop properties from the MPC,
i .e., it ensures:

(i). Recursive feasibility;

(ii). Constraint satisfaction;

(iii). Practical asymptotic stability.

Continuous stirred tank reactor

Alkia-x NN [2]

tonline 44.02 µs± 0.14 µs 3000 µs
toffline 10.3 h 500 h

card(X) 1.56 · 106 1.6 · 106

f (x)

x2

x1

Approximating 2-state-1-input nonlinear MPC using Alkia-x vs. using NNs [2]

Alkia-x has 100-times faster online evaluation and 50-times faster offline approximation

Cold atmospheric plasma

Alkia-x MPC (IPOPT)

tonline 96µs± 4 µs 507ms± 6ms
toffline 69 h [-]

card(X) 8.22 · 105 [-]
0 5 10 15 20 25 30

0

5

10

Time steps

x
3

MPC
Alkia-x

Approximating 3-state-2-input nonlinear MPC using Alkia-x subject to memory constraints

Approximate MPC with Alkia-x almost identical trajectory as MPC

Alkia-x has 5000-times faster online evaluation

Conclusion

Alkia-x automatically approximates nonlinear MPC schemes
with closed-loop guarantees

Alkia-x can automatically approximate wide range of
black-box functions with guarantees

Paper, code, extended abstract, poster: QR code
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