

Automatic nonlinear MPC approximation with closed-loop guarantees

A. Tokmak¹ C. Fiedler² M. N. Zeilinger³ S. Trimpe² J. Köhler³

¹Aalto University, Finland ²RWTH Aachen University, Germany ³ETH Zurich, Switzerland

FIHzürich

Proposed framework [1]

User-defined bound ϵ

Robust MPC Closed-loop guarantees for disturbances on control input bounded by ϵ

Samples of MPC

ALKIA-X

- Automatic computation of approximate MPC
- Uniform approximation error bounded by ϵ (Theorem 1)

Approximating function

Approximate MPC

Fast-to-evaluate controller
Closed-loop guarantees (Corollary 1)

We consider a robust model predictive control (MPC) formulation, which is designed such that the desired closed-loop guarantees remain valid until input disturbances below a user-chosen error bound $\epsilon > 0$. By approximating the feedback law implicitly defined by this MPC up to a tolerance ϵ , the approximate MPC preserves all control-theoretic guarantees induced by the MPC. Hence, approximating the MPC can be cast as a function approximation problem by sampling state and corresponding optimal inputs obtained by solving the MPC offline. To address this function approximation problem, we propose A_{LKIA-X} , the Adaptive and Localized Kernel Interpolation Algorithm with eXtrapolated reproducing kernel Hilbert space (RKHS) norm. A_{LKIA-X} automatically computes an explicit function that approximates the MPC with a uniform approximation error ϵ , resulting in a cheap-to-evaluate approximate MPC with guarantees on stability and constraint satisfaction.

Introduction

- Nonlinear MPC is computationally expensive but we require fast evaluation
- Explicit MPC approaches: Mostly for linear MPC or without closed-loop guarantees

Related work: Nonlinear MPC approximation with closed-loop guarantees [2]

- Construct MPC that is robust w.r.t. input disturbances bounded by ϵ
- Sample MPC law $f: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$ and learn approximation $h: \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$ offline with NNs
- Closed-loop guarantees on approximate MPC h if:

$$|f(x) - h(x)| \le \epsilon \quad \forall x \in \mathcal{X}$$
 (1)

Problem: Guaranteeing (1) for NNs is nontrivial and iterative

Solving (1) using kernel interpolation

- Assume f is in reproducing kernel Hilbert space (RKHS) of kernel k
- Kernel interpolation yields error bounds with RKHS norm $||f||_k$ and power function P_X [3]:

$$|f(x) - h(x)| \le P_X(x) ||f||_k \quad \forall x \in \mathcal{X}$$
 (2)

ALKIA-X

Properties

- (P1). Fast-to-evaluate approximating function;
- (P2). Guaranteed satisfaction of (1);
- (P3). Bound on worst-case number of required samples;
- (P4). Automatic and non-iterative algorithm with well-conditioned computations.

Tools

- (T1). Localized kernel interpolation;
- (T2). Adaptive sub-domain partitioning;
- (T3). RKHS norm extrapolation.

Localized kernel interpolation (T1)

- Kernels methods have scalability issues with more samples
- Approach based on local cubes: Localized approximating function that only uses samples within corresponding cube
- Piecewise-defined approximating function

Fast-to-evaluate

approximating

function (P1)

Guaranteed satisfaction of error bound (P2)

Adaptive sub-domain partitioning (T2)

- Introduce maximum number of samples per domain
- More samples required \rightarrow partition to sub-domains and reduce length scale accordingly
- Localized kernel interpolation on each sub-domain

↓↓
Well-conditioned
computations (P4)

RKHS norm extrapolation (T3)

- We require RKHS norm $||f||_k$ to bound (2)
- Oracle assumption on RKHS norm is restrictive
- Exponential function to extrapolate $||h||_k$
- Heuristic: Limit upper-bounds $||f||_k$

Automatic and implementable algorithm (P4)

Theorem 1: ALKIA-X

Suppose:

- Regularity assumptions on kernel k
- RKHS norm extrapolation heuristic holds

Then:

- Alkia-x terminates after finite number of samples
- Resulting approximation h satisfies (1), i.e., approximation error is uniformly bounded by ϵ Further suppose k is the SE-kernel, then:
- Offline computational complexity: $\mathcal{O}\left(\left(\frac{\sqrt{n}\|f\|_k}{\epsilon}\right)^n\right)$
- Online computational complexity $\mathcal{O}\left(\log_2\left(\frac{\sqrt{n}\|f\|_k}{\epsilon}\right)\right)$

Corollary 1: Closed-loop guarantees for approximate MPC

Suppose:

- Hypotheses of Theorem 1 hold
- MPC is robust w.r.t. input disturbances bounded by ϵ

Then, Alkia-x yields an approximate controller that inherits closed-loop properties from the MPC, i.e., it ensures:

- (i). Recursive feasibility;
- (ii). Constraint satisfaction;
- (iii). Practical asymptotic stability.

Continuous stirred tank reactor

	Alkia-x	NN [2]
\overline{t}_{online}	44.02 μs $\pm~0.14$ μs	3000 µs
$t_{\sf offline}$	10.3h	500 h
$\operatorname{card}(X)$	$1.56 \cdot 10^6$	$1.6 \cdot 10^{6}$

- Approximating 2-state-1-input nonlinear MPC using ALKIA-X vs. using NNs [2]
- Alkia-x has 100-times faster online evaluation and 50-times faster offline approximation

Cold atmospheric plasma

	ALKIA-X	MPC (IPOPT)
$t_{\sf online}$	$96\mu\mathrm{s}\pm4\mu\mathrm{s}$	$507\mathrm{ms}\pm6\mathrm{ms}$
$t_{\sf offline}$	69 h	[-]
$\operatorname{card}(X)$	$8.22 \cdot 10^5$	[-]

- Approximating 3-state-2-input nonlinear MPC using Alkia-x subject to memory constraints
- Approximate MPC with Alkia-x almost identical trajectory as MPC
- \blacksquare $A\mathrm{LKIA-X}$ has 5000-times faster online evaluation

Conclusion

- $A_{\rm LKIA-X}$ automatically approximates nonlinear MPC schemes with closed-loop guarantees
- $A_{\rm LKIA-X}$ can automatically approximate wide range of black-box functions with guarantees
- Paper, code, extended abstract, poster: **QR code**

References

- 1] A. Tokmak, C. Fiedler, M. N. Zeilinger, S. Trimpe, and J. Köhler. "Automatic nonlinear MPC approximation with closed-loop guarantees". In: *TAC* (submitted) (2023).
- M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer. "Learning an approximate model predictive controller with guarantees". In: $IEEE\ CSS\ (2018)$.
- [3] E. T. Maddalena, P. Scharnhorst, and C. N. Jones. "Deterministic error bounds for kernel-based learning techniques under bounded noise". In: *Automatica* (2021).