

Safe exploration in reproducing kernel Hilbert spaces

Research talk

Abdullah Tokmak^{1,2}

¹ Aalto University, Espoo, Finland ² Uppsala University, Uppsala, Sweden Aalto University School of Electrical Engineering

October 15, 2024

Motivational example

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

- Unknown reward function $f: A \to \mathbb{R}$
- Control policy parameters $a \in A$
- We require sample efficiency and safety guarantees

Introduction

Goal

Optimize control parameters of safety-critical real-world systems.

- Unknown reward function $f: A \to \mathbb{R}$
- Control policy parameters $a \in A$
- We require sample efficiency and safety guarantees

Solvable using classic reinforcement learning (RL)?

Classic RL struggles with both sample efficiency and safety guarantees.

- GPs to model unknown reward function *f* from samples
- GP characterized by **kernel** k: **Mean prediction** μ_t , **standard deviation** σ_t

- GPs to model unknown reward function *f* from samples
- GP characterized by kernel k: Mean prediction μ_t , standard deviation σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k, i.e., $f \in H_k$.

- GPs to model unknown reward function f from samples
- GP characterized by kernel k: Mean prediction μ_t , standard deviation σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k, i.e., $f \in H_k$.

Regularity assumption

An upper bound B on the RKHS norm $||f||_k$, i.e., $B \ge ||f||_k$, is known a priori.

- GPs to model unknown reward function f from samples
- GP characterized by kernel k: Mean prediction μ_t , standard deviation σ_t

Regularity assumption

The reward function f is a member of the **reproducing kernel Hilbert space (RKHS)** of the chosen kernel k, i.e., $f \in H_k$.

Regularity assumption

An upper bound *B* on the RKHS norm $||f||_k$, i.e., $B \ge ||f||_k$, is known a priori.

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B + \text{"data-term"}) \, \sigma_t(a)$$

Control policy optimization problem

 $\max_{a \in A} f(a)$ subject to $f(a) \ge h$

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B + \text{"data-term"}) \sigma_t(a)$$

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

5/20

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \ge h$

GP confidence intervals

 $|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \sigma_t(a)$

SAFEOPT¹ (
$$t = 0, B = ||f||_{k}$$
)

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \ge h$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

GP confidence intervals

 $|f(a) - \mu_t(a)| \le (B + \text{``data-term''}) \, \sigma_t(a)$

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \ge h$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B + \text{"data-term"}) \sigma_t(a)$$

$$\mathsf{SAFEOPT}^1\ (t=0,\,B<\|f\|_k)$$

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Control policy optimization problem

 $\max_{a \in \mathcal{A}} f(a)$ subject to $f(a) \ge h$

SAFEOPT¹ (
$$t = 30, B = ||f||_k$$
)

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B + \text{``data-term"}) \, \sigma_t(a)$$

$$\mathsf{SAFEOPT}^1 \; (t=30,\, B<\|f\|_k)$$

Y. Sui, A. Gotovos, J. W. Burdick, A. Krause, "Safe exploration for optimization with Gaussian processes," 2015.

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

 $^{^{2}\}text{Tokmak, Fiedler, Zeilinger, Trimpe, K\"{o}hler, ``Automatic nonlinear MPC approximation with closed-loop guarantees,'' submitted to IEEE TAC, 2023.}$

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

■ RKHS norm $||f||_k$ characterizes "smoothness" of function f

 $^{^2} Tokmak, Fiedler, Zeilinger, Trimpe, K\"{o}hler, "Automatic nonlinear MPC approximation with closed-loop guarantees," submitted to IEEE TAC, 2023.$

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality

 $^{^2{\}rm Tokmak, \, Fiedler, \, Zeilinger, \, Trimpe, \, K\"{o}hler, \, ``Automatic \, nonlinear \, MPC \, approximation \, \, with \, closed-loop \, guarantees, \, "submitted \, to \, IEEE \, TAC, \, 2023.}$

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality
- It is unclear how to upper bound the RKHS norm of unknown functions²

²Tokmak, Fiedler, Zeilinger, Trimpe, Köhler, "Automatic nonlinear MPC approximation with closed-loop guarantees," submitted to IEEE TAC, 2023.

Regularity assumption

Most safe BO algorithms require an upper bound *B* on the RKHS norm ($B \ge ||f||_k$) a priori.

- RKHS norm $||f||_k$ characterizes "smoothness" of function f
- Tight upper bound for practicality
- It is unclear how to upper bound the RKHS norm of unknown functions²

Problem definition

Develop a safe BO algorithm that over-estimates the RKHS norm $||f||_k$ with statistical guarantees.

²Tokmak, Fiedler, Zeilinger, Trimpe, Köhler, "Automatic nonlinear MPC approximation with closed-loop guarantees," submitted to IEEE TAC, 2023.

■ Increasing sampling density: $\mu_t \to f$ and $\|\mu_t\|_k \to \|f\|_k$ from below

- Increasing sampling density: $\mu_t \rightarrow f$ and $\|\mu_t\|_k \to \|f\|_k$ from below
- We require RKHS norm **over-estimation**

- Increasing sampling density: $\mu_t \to f$ and $\|\mu_t\|_k \to \|f\|_k$ from below
- We require RKHS norm **over-estimation**
- Extrapolate B_t from inputs $\|\mu_t\|_k$ and sampling density
- Training data from toy examples
- Extrapolation: RNNs to exploit sequential nature of inputs

- Increasing sampling density: $\mu_t \to f$ and $\|\mu_t\|_k \to \|f\|_k$ from below
- We require RKHS norm **over-estimation**
- Extrapolate B_t from inputs $\|\mu_t\|_k$ and sampling density
- Training data from toy examples
- Extrapolation: RNNs to exploit sequential nature of inputs

Theoretical guarantees instead of only heuristics

How do we get theoretical guarantees on the RKHS norm over-estimation?

■ Compute random RKHS functions $\rho_{t,i}, j \in \{1, \dots, m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

Increasing sampling density: $\rho_{t,i}, \|\rho_{t,i}\|_k \to f, \|f\|_k$

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

■ Increasing sampling density: $\rho_{t,i}$, $\|\rho_{t,i}\|_k \to f$, $\|f\|_k$

■ Compute random RKHS functions $\rho_{t,j}, j \in \{1, ..., m\}$ with kernel k

■ Random RKHS functions $\rho_{t,j}$ capture the behavior of reward function f

Increasing sampling density: $\rho_{t,i}, \|\rho_{t,i}\|_{k} \to f, \|f\|_{k}$

Statistical guarantees

Regularity assumptions

- Reward function f is a member of the RKHS of kernel k
- $\blacksquare \|f\|_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s \|\rho_{t,j}\|_k$

 $^{^3}$ W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

9/20

Statistical guarantees

Regularity assumptions

- Reward function f is a member of the RKHS of kernel k

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is probably approximate correct (PAC) $\forall t \ge 1$.

 $^{^3}$ W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

9/20

Statistical guarantees

Regularity assumptions

- Reward function f is a member of the RKHS of kernel k

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is probably approximate correct (PAC) $\forall t \ge 1$.

Proof sketch

- $B_t \leftarrow \max\{\text{RNN prediction}, \frac{1}{m} \sum_{j=1}^m \|\rho_{t,j}\|_k + \text{``safety-term''}\}$
- Statistical guarantees through Hoeffding's inequality³

³W. Hoeffding, "Probability inequalities for sums of bounded random variables," The Annals of Statistics, 1962

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

■ Optimization problem is **unsolvable** as constraint $||f||_k$ is unknown

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

■ Optimization problem is **unsolvable** as constraint $||f||_k$ is unknown

Impractical optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq \|\rho_t\|_k$, $\forall \rho_t \in H_k$.

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

■ Optimization problem is **unsolvable** as constraint $||f||_k$ is unknown

Impractical optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \ge \|\rho_t\|_k$, $\forall \rho_t \in H_k$.

■ Optimization problem is **impractical** as $B_t = \infty$

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

■ Optimization problem is **unsolvable** as constraint $||f||_k$ is unknown

Impractical optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq \|\rho_t\|_k$, $\forall \rho_t \in H_k$.

- lacksquare Optimization problem is **impractical** as $B_t = \infty$
- Analogy: Minimum radius on darts board that contains all points

https://www.3blue1brown. com/lessons/hyperdarts

Nontrivial optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$.

■ Optimization problem is **unsolvable** as constraint $||f||_k$ is unknown

Impractical optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq \|\rho_t\|_k$, $\forall \rho_t \in H_k$.

- Optimization problem is **impractical** as $B_t = \infty$
- Analogy: Minimum radius on darts board that contains all points
- Can we get better performance with statistical guarantees?

https://www.3blue1brown. com/lessons/hyperdarts

Chance-constrained optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$ with high probability.

M. C. Campi, S. Garatti, "Introduction to the scenario approach," SIAM, 2018.

Chance-constrained optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$ with high probability.

- Solve chance-constrained optimization problem using scenario approach⁴ by fixing m i.i.d. scenarios
- Scenarios: random RKHS functions $\rho_{t,j}$, $j \in \{1, ..., m\}$

M. C. Campi, S. Garatti, "Introduction to the scenario approach," SIAM, 2018.

Chance-constrained optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$ with high probability.

- Solve chance-constrained optimization problem using scenario approach⁴ by fixing m i.i.d. scenarios
- lacksquare Scenarios: random RKHS functions $ho_{t,j},\ j\in\{1,\ldots,m\}$

https://www.3blue1brown.com/ lessons/hyperdarts

⁴ M. C. Campi, S. Garatti, "Introduction to the scenario approach," SIAM, 2018.

Chance-constrained optimization problem

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq ||f||_k$ with high probability.

- Solve chance-constrained optimization problem using scenario approach⁴ by fixing m i.i.d. scenarios
- Scenarios: random RKHS functions $\rho_{t,j}$, $j \in \{1, ..., m\}$

Scenario approach

Minimize $B_t \in \mathbb{R}_+$ subject to $B_t \geq \|\rho_{j,t}\|_k$, $j \in \{1, \dots, m\}$.

https://www.3blue1brown.com/ lessons/hyperdarts

M. C. Campi, S. Garatti, "Introduction to the scenario approach," SIAM, 2018.

- Some random RKHS functions might be **outliers**, i.e., $\|\rho_{t,j}\|_k \gg \|f\|_k$
- Sampling-and-discarding scenario approach:⁵ Trade **feasibility** for **performance**

M. C. Campi, S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," Springer, 2011.

- Some random RKHS functions might be **outliers**, i.e., $\|\rho_{t,j}\|_k \gg \|f\|_k$
- Sampling-and-discarding scenario approach: Trade feasibility for performance
- Sort $\{\rho_{t,j}\}_{j=1}^m$ by **ascending RKHS norm** and **discard** r constraints $\{\rho_{t,j}\}_{j=m-r+1}^m$

M. C. Campi, S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," Springer, 2011.

- Some random RKHS functions might be **outliers**, i.e., $\|\rho_{t,j}\|_k \gg \|f\|_k$
- Sampling-and-discarding scenario approach: Trade feasibility for performance
- Sort $\{\rho_{t,j}\}_{j=1}^m$ by **ascending RKHS norm** and **discard** r constraints $\{\rho_{t,j}\}_{j=m-r+1}^m$

Sampling-and-discarding scenario approach

Min.
$$B_t \in \mathbb{R}_+$$
 s.t. $B_t \ge \|\rho_{t,j}\|_{k}, j \in \{1, \dots, m-r\} \land B_t < \|\rho_{t,j}\|_{k}, j \in \{m-r+1, \dots, m\}.$

⁵ M. C. Campi, S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," Springer, 2011.

- Some random RKHS functions might be **outliers**, i.e., $\|\rho_{t,j}\|_k \gg \|f\|_k$
- Sampling-and-discarding scenario approach:⁵ Trade **feasibility** for **performance**
- Sort $\{\rho_{t,j}\}_{j=1}^m$ by **ascending RKHS norm** and **discard** r constraints $\{\rho_{t,j}\}_{j=m-r+1}^m$

Sampling-and-discarding scenario approach

Min.
$$B_t \in \mathbb{R}_+$$
 s.t. $B_t \ge \|\rho_{t,j}\|_{k}, j \in \{1, \dots, m-r\} \land B_t < \|\rho_{t,j}\|_{k}, j \in \{m-r+1, \dots, m\}.$

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is PAC $\forall t \ge 1$.

⁵ M. C. Campi, S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," Springer, 2011.

- Some random RKHS functions might be **outliers**, i.e., $\|\rho_{t,j}\|_k \gg \|f\|_k$
- Sampling-and-discarding scenario approach:⁵ Trade **feasibility** for **performance**
- Sort $\{\rho_{t,j}\}_{j=1}^m$ by **ascending RKHS norm** and **discard** r constraints $\{\rho_{t,j}\}_{j=m-r+1}^m$

Sampling-and-discarding scenario approach

Min.
$$B_t \in \mathbb{R}_+$$
 s.t. $B_t \ge \|\rho_{t,j}\|_k$, $j \in \{1, \dots, m-r\} \land B_t < \|\rho_{t,j}\|_k$, $j \in \{m-r+1, \dots, m\}$.

Theorem

Over-estimation of RKHS norm $B_t \ge ||f||_k$ is PAC $\forall t \ge 1$.

Proof sketch

- Sampling-and-discarding scenario approach: $B_t \leftarrow \|\rho_{t,m-r}\|_k$
- RNN introduces lower bound: $B_t \leftarrow \max\{\text{RNN prediction}, \|\rho_{t,m-r}\|_k\}$

⁵ M. C. Campi, S. Garatti, "A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality," Springer, 2011.

Contrasting both approaches

Assumption (Scenario approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, ..., m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

Assumption (Hoeffding's inequality)

$$||f||_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s ||\rho_{t,j}||_k$$

Contrasting both approaches

Assumption (Scenario approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, ..., m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

Assumption (Hoeffding's inequality)

$$||f||_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s ||\rho_{t,j}||_k$$

Contrasting both approaches

Assumption (Scenario approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, ..., m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

Assumption (Hoeffding's inequality)

$$||f||_k \leq \lim_{s \to \infty} \frac{1}{s} \sum_{j=1}^s ||\rho_{t,j}||_k$$

⇒ Hoeffding assumption interpretability?

Scenario approach

Hoeffding's inequality

Safe BO with RKHS norm over-estimation

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_{\mathcal{K}}$ with guarantees.

Safe BO with RKHS norm over-estimation

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with guarantees.

Theorem (Safety)

Safe BO algorithm with RKHS norm over-estimation ensures safety with high probability.

Proof sketch (Safety)

Combine safety proof of SAFEOPT with RKHS norm over-estimation.

Research talk

Local interpretation of the RKHS norm

Safe exploration for optimization: Restricted to sub-space of domain

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term''}) \sigma_t(a)$$

Local interpretation of the RKHS norm

- Safe exploration for optimization: Restricted to sub-space of domain
- Exploit local "smoothness" to allow for more optimistic exploration

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term"}) \, \sigma_t(a)$$

Local interpretation of the RKHS norm

- Safe exploration for optimization: Restricted to sub-space of domain
- Exploit local "smoothness" to allow for more optimistic exploration

- Adaptive interpretation of locality: sub-domains around each sample
- Significantly more scalable through separate discretization in sub-domains

GP confidence intervals

$$|f(a) - \mu_t(a)| \le (B_t + \text{``data-term"}) \, \sigma_t(a)$$

Numerical experiments

Numerical experiments

Numerical experiments

Safely fine-tuning RL policies

Safely fine-tuning RL policies

Safely fine-tuning RL policies

Aalto University

Hardware experiment

Regularity assumption (Our approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, \dots, m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

Regularity assumption (Our approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, \dots, m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

■ Frequentist setting: Reward function f generated by nature's probability space

Regularity assumption (Our approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, \dots, m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

- Frequentist setting: Reward function *f* generated by *nature's* probability space
- By generating random RKHS functions, we approximate nature's probability space

Regularity assumption (Our approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, \dots, m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

- **Frequentist setting**: Reward function *f* generated by *nature's* probability space
- By generating random RKHS functions, we approximate nature's probability space
- Mixing Bayesian and frequentist methods by imposing a prior on f

Regularity assumption (Our approach)

RKHS norms $\|\rho_{t,j}\|_k$, $j \in \{1, \dots, m\}$ and $\|f\|_k$ are i.i.d. samples from the same (potentially unknown) probability space.

- Frequentist setting: Reward function *f* generated by *nature's* probability space
- By generating random RKHS functions, we approximate nature's probability space
- Mixing Bayesian and frequentist methods by imposing a prior on f

Regularity assumption (SAFEOPT)

Most safe BO algorithms require an upper bound *B* on the RKHS norm ($B \ge ||f||_k$) a priori.

In contrast to SAFEOPT, we systematically integrate data, adapt bounds and cover a rich set of functions

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with statistical guarantees.

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_{k}$ with statistical guarantees.

Contributions

- Abdullah Tokmak, Thomas B. Schön, Dominik Baumann, "PACSBO: Probably approximately correct safe Bayesian optimization," In: Springer Lecture Notes in Control and Information Sciences - Proceedings, 2024.
- Abdullah Tokmak, Kiran G. Krishnan, Thomas B. Schön, Dominik Baumann, "Safe exploration in reproducing kernel Hilbert spaces," submitted to AISTATS 2025.

Conclusions

Goal

Optimize control parameters of safety-critical real-world systems.

Problem definition

Develop a safe BO algorithm that estimates the RKHS norm $||f||_k$ with statistical guarantees.

Contributions

- Abdullah Tokmak, Thomas B. Schön, Dominik Baumann, "PACSBO: Probably approximately correct safe Bayesian optimization," In: Springer Lecture Notes in Control and Information Sciences - Proceedings, 2024.
- Abdullah Tokmak, Kiran G. Krishnan, Thomas B. Schön, Dominik Baumann, "Safe exploration in reproducing kernel Hilbert spaces," submitted to AISTATS 2025.

Preprir