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Introduction

Goal
Optimize control parameters of
safety-critical real-world systems.

Unknown reward function f : A → R
Control policy parameters a ∈ A
We require sample efficiency and
safety guarantees

Solvable using classic reinforcement learning (RL)?

Classic RL struggles with both sample efficiency and safety guarantees.
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Gaussian process (GP) regression

GPs to model unknown reward function f from samples

GP characterized by kernel k : Mean prediction µt , standard deviation σt

Regularity assumption

The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of
the chosen kernel k , i.e., f ∈ Hk .

Regularity assumption

An upper bound B on the RKHS norm ‖f‖k ,
i.e., B ≥ ‖f‖k , is known a priori.

GP confidence intervals
|f (a)− µt(a)| ≤ (B + “data-term”)σt(a)

Safe exploration in reproducing kernel Hilbert spaces 4/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Gaussian process (GP) regression

GPs to model unknown reward function f from samples

GP characterized by kernel k : Mean prediction µt , standard deviation σt

Regularity assumption

The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of
the chosen kernel k , i.e., f ∈ Hk .

Regularity assumption

An upper bound B on the RKHS norm ‖f‖k ,
i.e., B ≥ ‖f‖k , is known a priori.

GP confidence intervals
|f (a)− µt(a)| ≤ (B + “data-term”)σt(a)

Safe exploration in reproducing kernel Hilbert spaces 4/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Gaussian process (GP) regression

GPs to model unknown reward function f from samples

GP characterized by kernel k : Mean prediction µt , standard deviation σt

Regularity assumption

The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of
the chosen kernel k , i.e., f ∈ Hk .

Regularity assumption

An upper bound B on the RKHS norm ‖f‖k ,
i.e., B ≥ ‖f‖k , is known a priori.

GP confidence intervals
|f (a)− µt(a)| ≤ (B + “data-term”)σt(a)

Safe exploration in reproducing kernel Hilbert spaces 4/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Gaussian process (GP) regression

GPs to model unknown reward function f from samples

GP characterized by kernel k : Mean prediction µt , standard deviation σt

Regularity assumption

The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of
the chosen kernel k , i.e., f ∈ Hk .

Regularity assumption

An upper bound B on the RKHS norm ‖f‖k ,
i.e., B ≥ ‖f‖k , is known a priori.

GP confidence intervals
|f (a)− µt(a)| ≤ (B + “data-term”)σt(a)

Safe exploration in reproducing kernel Hilbert spaces 4/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Safe Bayesian optimization (BO) with GPs

Control policy optimization problem

maxa∈A f (a) subject to f (a) ≥ h
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SAFEOPT1 (t = 0, B = ‖f‖k )

Samples h
f µt

Confidence intervals

GP confidence intervals
|f (a)− µt(a)| ≤ (B + “data-term”)σt(a)

1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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RKHS norm assumption in safe BO
Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm (B ≥ ‖f‖k ) a priori.

RKHS norm ‖f‖k characterizes
“smoothness” of function f

Tight upper bound for practicality

It is unclear how to upper bound the
RKHS norm of unknown functions2

Problem definition
Develop a safe BO algorithm that over-estimates
the RKHS norm ‖f‖k with statistical guarantees.
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‖f‖k = 0.1
‖f‖k = 1
‖f‖k = 10

2Tokmak, Fiedler, Zeilinger, Trimpe, Köhler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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Predicting RKHS norms

Increasing sampling density: µt → f and
‖µt‖k → ‖f‖k from below

We require RKHS norm over-estimation

Extrapolate Bt from inputs ‖µt‖k and
sampling density

Training data from toy examples

Extrapolation: RNNs to exploit sequential
nature of inputs
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1
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‖f‖k

‖µt‖k

Theoretical guarantees instead of only heuristics

How do we get theoretical guarantees on the RKHS norm over-estimation?
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Random RKHS functions

Compute random RKHS functions
ρt,j , j ∈ {1, . . . ,m} with kernel k

Random RKHS functions ρt,j capture
the behavior of reward function f
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Statistical guarantees

Regularity assumptions

Reward function f is a member of the RKHS of kernel k

‖f‖k ≤ lims→∞ 1
s

∑s
j=1 ‖ρt,j‖k

Theorem
Over-estimation of RKHS norm Bt ≥ ‖f‖k is probably approximate correct (PAC) ∀t ≥ 1.

Proof sketch

Bt ← max{RNN prediction, 1
m

∑m
j=1 ‖ρt,j‖k + “safety-term”}

Statistical guarantees through Hoeffding’s inequality3

3W. Hoeffding, “Probability inequalities for sums of bounded random variables,” The Annals of Statistics, 1962
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RKHS norm over-estimation as optimization problem

Nontrivial optimization problem

Minimize Bt ∈ R+ subject to Bt ≥ ‖f‖k .

Optimization problem is unsolvable as constraint ‖f‖k is unknown

Impractical optimization problem

Minimize Bt ∈ R+ subject to Bt ≥ ‖ρt‖k , ∀ρt ∈ Hk .

Optimization problem is impractical as Bt =∞
Analogy: Minimum radius on darts board that contains all points

Can we get better performance with statistical guarantees?
https://www.3blue1brown.

com/lessons/hyperdarts
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RKHS norm over-estimation as optimization problem (2)

Chance-constrained optimization problem

Minimize Bt ∈ R+ subject to Bt ≥ ‖f‖k with high probability.

Solve chance-constrained optimization problem using scenario
approach4 by fixing m i.i.d. scenarios

Scenarios: random RKHS functions ρt,j , j ∈ {1, . . . ,m}

Scenario approach
Minimize Bt ∈ R+ subject to Bt ≥ ‖ρj,t‖k , j ∈ {1, . . . ,m}.

https://www.3blue1brown.com/

lessons/hyperdarts

4 M. C. Campi, S. Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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RKHS norm over-estimation as optimization problem (3)
Some random RKHS functions might be outliers, i.e., ‖ρt,j‖k � ‖f‖k

Sampling-and-discarding scenario approach:5 Trade feasibility for performance

Sort {ρt,j}m
j=1 by ascending RKHS norm and discard r constraints {ρt,j}m

j=m−r+1

Sampling-and-discarding scenario approach

Min. Bt ∈ R+ s.t. Bt ≥ ‖ρt,j‖k , j ∈ {1, . . . ,m− r} ∧ Bt < ‖ρt,j‖k , j ∈ {m− r + 1, . . . ,m}.

Theorem
Over-estimation of RKHS norm Bt ≥ ‖f‖k is PAC ∀t ≥ 1.

Proof sketch
Sampling-and-discarding scenario approach: Bt ← ‖ρt,m−r‖k

RNN introduces lower bound: Bt ← max{RNN prediction, ‖ρt,m−r‖k}

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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Contrasting both approaches
Assumption (Scenario approach)

RKHS norms ‖ρt,j‖k , j ∈ {1, . . . ,m}
and ‖f‖k are i.i.d. samples from the same
(potentially unknown) probability space.

Assumption (Hoeffding’s inequality)

‖f‖k ≤ lims→∞ 1
s

∑s
j=1 ‖ρt,j‖k

⇒ Hoeffding assumption interpretability?
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Safe BO with RKHS norm over-estimation

Problem definition
Develop a safe BO algorithm that estimates the RKHS norm ‖f‖k with guarantees.

Theorem (Safety)
Safe BO algorithm with RKHS norm over-estimation ensures safety with high probability.

Proof sketch (Safety)

Combine safety proof of SAFEOPT with RKHS norm over-estimation.

Safe exploration in reproducing kernel Hilbert spaces 14/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Safe BO with RKHS norm over-estimation

Problem definition
Develop a safe BO algorithm that estimates the RKHS norm ‖f‖k with guarantees.

Theorem (Safety)
Safe BO algorithm with RKHS norm over-estimation ensures safety with high probability.

Proof sketch (Safety)

Combine safety proof of SAFEOPT with RKHS norm over-estimation.

Safe exploration in reproducing kernel Hilbert spaces 14/20
Abdullah Tokmak abdullah.tokmak@aalto.fi
Research talk October 15, 2024

mailto:abdullah.tokmak@aalto.fi


Local interpretation of the RKHS norm

Safe exploration for optimization:
Restricted to sub-space of domain

Exploit local “smoothness” to allow
for more optimistic exploration

Adaptive interpretation of locality:
sub-domains around each sample

Significantly more scalable through
separate discretization in sub-domains

GP confidence intervals
|f (a)− µt(a)| ≤ (Bt + “data-term”)σt(a)

0 0.25 0.5 0.75 1
−2

−1

0

‖f1‖k = 0.15 ‖f2‖k = 10.13 ‖f3‖k = 0.16

a

f(
a)
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Numerical experiments
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Safely fine-tuning RL policies
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Hardware experiment
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Limitations
Regularity assumption (Our approach)

RKHS norms ‖ρt,j‖k , j ∈ {1, . . . ,m} and ‖f‖k are i.i.d. samples from the same
(potentially unknown) probability space.

Frequentist setting: Reward function f generated by nature’s probability space

By generating random RKHS functions, we approximate nature’s probability space

Mixing Bayesian and frequentist methods by imposing a prior on f

Regularity assumption (SAFEOPT)

Most safe BO algorithms require an upper bound B on the RKHS norm (B ≥ ‖f‖k ) a priori.

In contrast to SAFEOPT, we systematically integrate data, adapt bounds and cover
a rich set of functions
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Conclusions
Goal
Optimize control parameters of
safety-critical real-world systems.

Problem definition
Develop a safe BO algorithm that estimates the
RKHS norm ‖f‖k with statistical guarantees.

Contributions
1. Abdullah Tokmak, Thomas B. Schön, Dominik

Baumann, "PACSBO: Probably approximately
correct safe Bayesian optimization," In:
Springer Lecture Notes in Control and Information
Sciences - Proceedings, 2024.

2. Abdullah Tokmak, Kiran G. Krishnan, Thomas B.
Schön, Dominik Baumann, "Safe exploration in
reproducing kernel Hilbert spaces," submitted to
AISTATS 2025.
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