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Introduction

Optimize control parameters of
safety-critical real-world systems.
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Introduction

Optimize control parameters of
safety-critical real-world systems.

m Unknown reward function f: A — R
m Control policy parameters a € A

m We require sample efficiency and
safety guarantees
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Introduction

Optimize control parameters of
safety-critical real-world systems.

m Unknown reward function f: A — R ok b
m Control policy parameters a € A

m We require sample efficiency and
safety guarantees

Classic RL struggles with both sample efficiency and safety guarantees.
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Gaussian process (GP) regression

m GPs to model unknown reward function f from samples
m GP characterized by kernel k: Mean prediction ., standard deviation o;
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Gaussian process (GP) regression

m GPs to model unknown reward function f from samples
m GP characterized by kernel k: Mean prediction ., standard deviation o;

Regularity assumption

The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of
the chosen kernel k, i.e., f € Hk.

99 Aaito University Safe exploration in reproducing kernel Hilbert spaces 4/20
A School ol EI ctrical Abdullah Tokmak abdullah.tokmak@aalto.fi
Engineerin Research talk October 15, 2024


mailto:abdullah.tokmak@aalto.fi

Gaussian process (GP) regression

m GPs to model unknown reward function f from samples
m GP characterized by kernel k: Mean prediction ., standard deviation o;

Regularity assumption
The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of

the chosen kernel k, i.e., f € Hk.

Regularity assumption
An upper bound B on the RKHS norm ||f||«,
i.e., B> [|f|[, is known a priori.
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Gaussian process (GP) regression

m GPs to model unknown reward function f from samples
m GP characterized by kernel k: Mean prediction ., standard deviation o;

Regularity assumption
The reward function f is a member of the reproducing kernel Hilbert space (RKHS) of

the chosen kernel k, i.e., f € Hk.

Regularity assumption
An upper bound B on the RKHS norm ||f||«, |f(a)
i.e., B > |[|f||, is known a priori.

— pi(a)] < (B + “data-term”) o4(a)
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Safe Bayesian optimization (BO) with GPs

maxac 4 f(a) subjectto f(a) > h |f(a) — me(a)| < (B + “data-term”) o+(a)

1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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Safe Bayesian optimization (BO) with GPs

maxac 4 f(a) subjectto f(a) > h

|f(a) — pui(a)| < (B + “data-term”) o4(a)

SAFEOPT! (t =0, B = ||f|«)
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1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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Safe Bayesian optimization (BO) with GPs

maxac4 f(a) subjectto f(a) > h

[f(a) — pui(a)| < (B + “data-term”) o4(a)

SAFEOPT! (t =30, B = ||f||x)

° Samples ---h

f — Ht
Confidence intervals
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1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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Safe Bayesian optimization (BO) with GPs

maxac 4 f(a) subjectto f(a) > h |f(a) — me(a)| < (B + “data-term”) o+(a)

SAFEOPT! (t = 30, B = ||f|[x) SAFEOPT! (t =0, B < ||f||«)
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1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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Safe Bayesian optimization (BO) with GPs

maxac4 f(a) subjectto f(a) > h

[f(a) — pui(a)| < (B + “data-term”) o4(a)

SAFEOPT! (t = 30, B = ||f|[x) SAFEOPT! (¢ = 30, B < ||f|[x)
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1Y. Sui, A. Gotovos, J. W. Burdick, A. Krause,“Safe exploration for optimization with Gaussian processes,” 2015.
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RKHS norm assumption in safe BO

Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||f||«) a priori.

2Tokmak, Fiedler, Zeilinger, Trimpe, Kohler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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RKHS norm assumption in safe BO

Regularity assumption
Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||/f||«) a priori.J
m RKHS norm ||f||x characterizes
“smoothness” of function f 17
—~ 0 N
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2Tokmak, Fiedler, Zeilinger, Trimpe, Kohler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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RKHS norm assumption in safe BO

Regularity assumption

Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||f||x) a priori.

J

m RKHS norm ||f||x characterizes
“smoothness” of function f

m Tight upper bound for practicality —
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2Tokmak, Fiedler, Zeilinger, Trimpe, Kohler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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RKHS norm assumption in safe BO

Regularity assumption
Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||/f||«) a priori.J
m RKHS norm ||f||x characterizes
“smoothness” of function f 17
m Tight upper bound for practicality - 0 -
m Itis unclear how to upper bound the = 1
RKHS norm of unknown functions? — ”‘f‘ﬂﬁk::oi‘
—2 — [|fllx =10
6 0[5 1‘

a

2Tckmak, Fiedler, Zeilinger, Trimpe, Kohler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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RKHS norm assumption in safe BO

Regularity assumption
Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||/f||«) a priori.}

m RKHS norm ||f||x characterizes

“smoothness” of function f 1

m Tight upper bound for practicality - 0 -

m Itis unclear how to upper bound the = 1
RKHS norm of unknown functions? — ”"‘ﬂﬁ;‘)ﬂ
—2 — Ifllc = 10

Problem definition ‘ T

T
Develop a safe BO algorithm that over-estimates 0 0é5 1
the RKHS norm ||f||x with statistical guarantees.

2Tokmak, Fiedler, Zeilinger, Trimpe, Kohler, “Automatic nonlinear MPC approximation with closed-loop guarantees,” submitted to IEEE TAC, 2023.
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Predicting RKHS norms

m Increasing sampling density: ;i — f and
12tll — [If]lx from below

sk ek

RKHS norm

0.8 #*
# T
F % luele

2 4 6 8
Sampling density
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Predicting RKHS norms

m Increasing sampling density: u; — f and ]
e i
2| - [[f]lx from below o : .
m We require RKHS norm over-estimation @ os ﬁ
< 0
5 # T,
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Sampling density
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Predicting RKHS norms

m Increasing sampling density: u; — f and ]
[1etllk = ||f||« from below g o ok
. ctimati e
m We require RKHS norm over-estimation o w
= Extrapolate B; from inputs || /|« and < 0.8 e
sampling density o T HIIfHHk
1
m Training data from toy examples ’é(\ T T t ’\{
. . . 2 4 6 8
m Extrapolation: RNNs to exploit sequential Sampling density

nature of inputs
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Predicting RKHS norms

m Increasing sampling density: u; — f and

12tllx = [I£]| from below £ I
m We require RKHS norm over-estimation < M
m Extrapolate B; from inputs |||/« and < 0.8 e
sampling density o T HIIfHHk
%
m Training data from toy examples ’é(\ T — ’\{

m Extrapolation: RNNs to exploit sequential éampﬁng dgnsitys

nature of inputs

Theoretical guarantees instead of only heuristics
How do we get theoretical guarantees on the RKHS norm over-estimation? J
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Random RKHS functions

® Samples

—_— f

5 N

m Compute random RKHS functions
ptj, j € {1,...,m} with kernel k

m Random RKHS functions p;; capture 0 05 1
the behavior of reward function f

Frequency
OoO=NWwWh
|

0o 2 4 6 8 10
iraaiin
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Random RKHS functions

® Samples

—_

5 \ Pj

m Compute random RKHS functions
ptj, J € {1,...,m} with kernel k

m Random RKHS functions p;; capture 0 05 1
the behavior of reward function f a
> ~
3] 4
(0] 3
> 2
m Increasing sampling density: £ (1) ]
pjs llotille = 1, 11Fl 0 2 4 6 8 10
[lot,llx
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Random RKHS functions

1 -

m Compute random RKHS functions 05
ptj, j € {1,...,m} with kernel k < o
—0.5 -

® Samples
f

Ptj

m Random RKHS functions p;; capture 0.5 1
the behavior of reward function f a
>
[&]
§ 10
m Increasing sampling density: g S
’ Nl = £, |If L= 0 T T T
puislenslle = £l . T
12,1l
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Random RKHS functions

m Compute random RKHS functions
ptj, j € {1,...,m} with kernel k

m Random RKHS functions p;; capture
the behavior of reward function f

m Increasing sampling density:
Py lpejlle = £, 1l

f(a)

Frequency

® Samples
— f

Ptj

30
20
10

el

Safe exploration in reproducing kernel Hilbert spaces
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Statistical guarantees

m Reward function f is a member of the RKHS of kernel k

m [|fllx < lims oo 5 X071 lonillk

3W. Hoeffding, “Probability inequalities for sums of bounded random variables,” The Annals of Statistics, 1962
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Statistical guarantees

m Reward function f is a member of the RKHS of kernel k

m ||l < limssoo 1§ st=1 ot

Over-estimation of RKHS norm B; > ||f||« is probably approximate correct (PAC) Vt > 1.

3W. Hoeffding, “Probability inequalities for sums of bounded random variables,” The Annals of Statistics, 1962
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Statistical guarantees

m Reward function f is a member of the RKHS of kernel k

m [|fllx < lims oo 5 X071 lonillk

Over-estimation of RKHS norm B; > ||f||« is probably approximate correct (PAC) Vt > 1.

m B; + max{RNN prediction, = >, || o1,

Kk + “safety-term”}
m Statistical guarantees through Hoeffding’s inequality®

3W. Hoeffding, “Probability inequalities for sums of bounded random variables,” The Annals of Statistics, 1962
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RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«. I
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RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«. I

m Optimization problem is unsolvable as constraint ||f||x is unknown
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RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«.

m Optimization problem is unsolvable as constraint ||f||x is unknown

Minimize B; € R subject to B; > ||pt|lk, Vpr € Hk.

iversif Safe exploration in reproducing kernel Hilbert spaces 10/20

Aalto Ui it
A” Sehool of Electrical Abdullah Tokmak abdullah.tokmak@aalto.fi
Engineering Research talk October 15, 2024


https://www.3blue1brown.com/lessons/hyperdarts
https://www.3blue1brown.com/lessons/hyperdarts
mailto:abdullah.tokmak@aalto.fi

RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«.

m Optimization problem is unsolvable as constraint ||f||x is unknown

Minimize B; € R subject to B; > ||pt|lk, Vpr € Hk.

m Optimization problem is impractical as B; = oo
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RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«. |

m Optimization problem is unsolvable as constraint || f||x is unknown

Minimize B; € R subject to B; > ||pt|lk, Vpr € Hk. |

m Optimization problem is impractical as B; = oo
m Analogy: Minimum radius on darts board that contains all points

https://www.3bluelbrown.

com/lessons/hyperdarts
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RKHS norm over-estimation as optimization problem

Minimize B; € R subject to B; > ||f||«. I

m Optimization problem is unsolvable as constraint || f||x is unknown

Minimize B; € R subject to B; > ||pt|lk, Vpr € Hk. I

m Optimization problem is impractical as B; = oo
m Analogy: Minimum radius on darts board that contains all points
m Can we get better performance with statistical guarantees?

https://www.3bluelbrown.
com/lessons/hyperdarts
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RKHS norm over-estimation as optimization problem (2)

Minimize B; € R subject to B; > ||/f||x with high probability.

4 M. C. Campi, S. Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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RKHS norm over-estimation as optimization problem (2)

Minimize B; € R subject to B; > ||/f||x with high probability. |

m Solve chance-constrained optimization problem using scenario
approach? by fixing mi.i.d. scenarios

m Scenarios: random RKHS functions pj, j € {1,...,m}

4 M. C. Campi, S. Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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RKHS norm over-estimation as optimization problem (2)

Chance-constrained optimization problem
Minimize B; € R, subject to B; > ||f||x with high probability.

m Solve chance-constrained optimization problem using scenario
approach* by fixing m i.i.d. scenarios

m Scenarios: random RKHS functions pj, j € {1,...,m}

https://www.3bluelbrown.com/

lessons/hyperdarts
4 . . . .
M. C. Campi, S. Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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RKHS norm over-estimation as optimization problem (2)

Chance-constrained optimization problem
Minimize B; € R, subject to B; > ||f||x with high probability.

m Solve chance-constrained optimization problem using scenario
approach* by fixing m i.i.d. scenarios

m Scenarios: random RKHS functions pj, j € {1,...,m}

Scenario approach
Minimize B; € R, subject to B; > ||p;.(llx, j € {1,...,m}.
https://www.3bluelbrown.com/
lessons/hyperdarts
4 M. C. Campi, S. Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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RKHS norm over-estimation as optimization problem (3)
m Some random RKHS functions might be outliers, i.e., || p¢||« > |||«
= Sampling-and-discarding scenario approach:® Trade feasibility for performance

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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RKHS norm over-estimation as optimization problem (3)
= Some random RKHS functions might be outliers, i.e., |||« > |/f]«
= Sampling-and-discarding scenario approach:® Trade feasibility for performance
m Sort {p1;}", by ascending RKHS norm and discard r constraints {p¢;}" ,_, 4

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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RKHS norm over-estimation as optimization problem (3)
m Some random RKHS functions might be outliers, i.e., || p¢||« > |||«
= Sampling-and-discarding scenario approach:® Trade feasibility for performance
m Sort {p1;}", by ascending RKHS norm and discard r constraints {p¢;}" ,_, 4

Min. By € Ry sit. By > |lptjllks j€ {1,....m—=r} ABy < |lptjll, j € {m—r+1,...,m}.

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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RKHS norm over-estimation as optimization problem (3)
m Some random RKHS functions might be outliers, i.e., || p¢||« > |||«
= Sampling-and-discarding scenario approach:® Trade feasibility for performance
m Sort {p1;}", by ascending RKHS norm and discard r constraints {p¢;}" ,_, 4

Min. By € Ry sit. By > |lptjllks j€ {1,....m—=r} ABy < |lptjll, j € {m—r+1,...,m}.

Over-estimation of RKHS norm B; > ||f||« is PAC Vt > 1. |

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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RKHS norm over-estimation as optimization problem (3)
m Some random RKHS functions might be outliers, i.e., || p¢||« > |||«
= Sampling-and-discarding scenario approach:® Trade feasibility for performance
m Sort {p1;}", by ascending RKHS norm and discard r constraints {p¢;}" ,_, 4

Min. By € Ry sit. By > |lptjllks j€ {1, ..., m—=r} ABy < |lpejllk, j€ {m—r+1,...,m

Over-estimation of RKHS norm B; > ||f||« is PAC Vt > 1. |

m Sampling-and-discarding scenario approach: B; < ||pt.m—r||«
® RNN introduces lower bound: B; <— max{RNN prediction, | p¢,m—r|x}

5 M. C. Campi, S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality,” Springer, 2011.
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Contrasting both approaches

Assumption (Scenario approach) Assumption (Hoeffding’s inequality)

RKHS norms || ptlk, j € {1,...,m} 1l < limsoo £ 32, oty
and ||f||« are i.i.d. samples from the same

k

|

(potentially unknown) probability space.
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Contrasting both approaches
Assumption (Scenario approach) Assumption (Hoeffding’s inequality)
RKHS norms ||p¢|lx, j € {1, ..., m} [l < lims oo ¢ X374 01,1l

and ||f||« are i.i.d. samples from the same
(potentially unknown) probability space.

Scenario approach Hoeffding’s inequality
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Contrasting both approaches

Assumption (Scenario approach)

RKHS norms ||p¢jllk, j € {1,...,m}
and ||f||« are i.i.d. samples from the same
(potentially unknown) probability space.

Scenario approach

£l < limsoo 5 3271 o2l

Assumption (Hoeffding’s inequality)

= Hoeffding assumption interpretability?

Hoeffding’s inequality
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Safe BO with RKHS norm over-estimation

Develop a safe BO algorithm that estimates the RKHS norm ||f||x with guarantees. l
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Safe BO with RKHS norm over-estimation

Develop a safe BO algorithm that estimates the RKHS norm ||f||x with guarantees.

Safe BO algorithm with RKHS norm over-estimation ensures safety with high probability.

Combine safety proof of SAFEOPT with RKHS norm over-estimation.
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Local interpretation of the RKHS norm

m Safe exploration for optimization:

Restricted to sub-space of domain
[f(a) — ui(a)| < (Bt + “data-term”) o+(a)
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Local interpretation of the RKHS norm

m Safe exploration for optimization:
Restricted to sub-space of domain : B .
. _ < 13 " rm"
= Exploit local “smoothness” to allow ) = )] < (o G )
for more optimistic exploration

0 4
©
= —11
[|fi]lk = 0.15 |||f2]|x = 10.13] ||f3]|x = 0.16
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Local interpretation of the RKHS norm

m Safe exploration for optimization:
Restricted to sub-space of domain

m Exploit local “smoothness” to allow
for more optimistic exploration

m Adaptive interpretation of locality:
sub-domains around each sample

m Significantly more scalable through
separate discretization in sub-domains

f(a)

— put(a)| < (B: + “data-term”) o+(a)

Ifillk = 0.15

ollx = 10.13| ||| = 0.16

0.25

0.5 0.75 1
a
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Numerical experiments

Our algorithm

. Samples
Reward function
— — — Safety threshold

4 Starting sample
—4 ‘

f
0 0.5 1
a
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Numerical experiments

Our algorithm SAFEOPT (B: < ||f]lx)

. Samples
Reward function

— — — Safety threshold

4  Starting sample
—4 ‘

f
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a a
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Numerical experiments

Our algorithm SAFEOPT (B: < ||f]lx) SAFEOPT (B > ||f|lx)

R, B A e e e
. Samples
Reward function
— — — Safety threshold
4 4  Starting sample
- I T T T T T T T

f
0 0.5 1 0 0.5 1 0 0.5 1
a a a
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Safely fine-tuning RL policies
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Safely fine-tuning RL policies

Cart Pole (1D) Mountain Car (1D)

=

Lunar Lander (2D)

Reward

—— Our algorithm

--- SAFEOPT, B;=0.2

------ SAFEOPT, B; = 30
X Safety violations
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Safely fine-tuning RL policies

Cart Pole (1D) Mountain Car (1D)

Lunar Lander (2D)
°
g 14
=
o .'[ ‘
0
Half Cheetah (6D) Ant (8D)
- —— Our algorithm
s 17 --- SAFEOPT, B;=0.2
3 [ N R PO SAFEOPT, B; = 30
T 9 Lo : ‘ : : X Safety violations
0 20 40 0 20 40
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Hardware experiment
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Limitations

RKHS norms ||psjllx, j € {1,...,m} and ||f||x are i.i.d. samples from the same
(potentially unknown) probability space.
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Limitations
Regularity assumption (Our approach)

RKHS norms ||p¢||k, j € {1,...,m} and ||f| x are i.i.d. samples from the same
(potentially unknown) probability space.

m Frequentist setting: Reward function f generated by nature’s probability space
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Regularity assumption (Our approach)

RKHS norms ||p¢||k, j € {1,...,m} and ||f| x are i.i.d. samples from the same
(potentially unknown) probability space.

m Frequentist setting: Reward function f generated by nature’s probability space
m By generating random RKHS functions, we approximate nature’s probability space
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Limitations
Regularity assumption (Our approach)

RKHS norms ||p¢||k, j € {1,...,m} and ||f| x are i.i.d. samples from the same
(potentially unknown) probability space.

m Frequentist setting: Reward function f generated by nature’s probability space
m By generating random RKHS functions, we approximate nature’s probability space
= Mixing Bayesian and frequentist methods by imposing a prior on f
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Limitations
Regularity assumption (Our approach)

RKHS norms ||p¢||k, j € {1,...,m} and ||f| x are i.i.d. samples from the same
(potentially unknown) probability space.

m Frequentist setting: Reward function f generated by nature’s probability space
m By generating random RKHS functions, we approximate nature’s probability space
= Mixing Bayesian and frequentist methods by imposing a prior on f

Regularity assumption (SAFEOPT)
Most safe BO algorithms require an upper bound B on the RKHS norm (B > ||f||«) a priori.

m In contrast to SAFEOPT, we systematically integrate data, adapt bounds and cover
a rich set of functions
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Conclusions

Optimize control parameters of

Develop a safe BO algorithm that estimates the

safety-critical real-world systems. RKHS norm || f||x with statistical guarantees.
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Conclusions

Optimize control parameters of

Develop a safe BO algorithm that estimates the
safety-critical real-world systems. RKHS norm ||f||x with statistical guarantees.

Contributions
1. Abdullah Tokmak, Thomas B. Schén, Dominik
Baumann, "PACsBO: Probably approximately
correct safe Bayesian optimization," In:
Springer Lecture Notes in Control and Information
Sciences - Proceedings, 2024.

2. Abdullah Tokmak, Kiran G. Krishnan, Thomas B.
Schén, Dominik Baumann, "Safe exploration in
reproducing kernel Hilbert spaces," submitted to

. V.
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Conclusions

Goal Problem definition
Optimize control parameters of Develop a safe BO algorithm that estimates the
safety-critical real-world systems. RKHS norm ||f||x with statistical guarantees.

Contributons

1. Abdullah Tokmak, Thomas B. Schén, Dominik
Baumann, "PACsBO: Probably approximately
correct safe Bayesian optimization," In:
Springer Lecture Notes in Control and Information
Sciences - Proceedings, 2024.

2. Abdullah Tokmak, Kiran G. Krishnan, Thomas B.
Schon, Dominik Baumann, "Safe exploration in
reproducing kernel Hilbert spaces," submitted to
AISTATS 2025.

o Preprlnts
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