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Motivational example

keysight.com

Many real-world problems are of distributed
multi-agent nature

No central coordinating node

Optimize agents’ parametrized control
policies to reach cooperative goal

Goal
Optimize control parameters in distributed multi-agent systems (MAS) while ensuring
safety and sample efficiency.
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Introduction

Goal
Optimize control parameters in distributed MAS
while ensuring safety and sample efficiency.

Control policy parameters a(j) ∈ A of each agent j ∈ {1, . . . ,N}
Global black-box reward function f : AN → R, global control parameter a ∈ AN

Regularity: Function f member of RKHS Hk of kernel k

Sample efficiency and safety guarantees

SAFEOPT:1 Safe Bayesian optimization (BO) algorithm with Gaussian process (GP)
regression that works well in single-agent systems.

1Y. Sui et al., “Safe exploration for optimization with Gaussian processes,” ICML 2015.
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SAFEOPT: Safe BO with GP regression

Episodic setting: Global parameter at ∈ AN ⇒ yt = f (at) + noise at each iteration
GPs with kernel k : Uncertainty quantification with confidence intervals

Safe policy optimization problem

maxa∈AN f (a) subject to f (at) ≥ h, ∀t ≥ 1

1: for t = 1, 2, . . . do
2: Build GP with samples
3: at+1 ← SAFEOPT

4: yt+1 ← f (at+1) + noise

5: return Best parameter a⋆
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SAFEOPT for distributed multi-agent systems
Safe policy optimization problem

maxa∈AN f (a) subject to f (at) ≥ h, ∀t ≥ 1

Samples (at , yt) through experiments are central to inference problem
Agent j observes local parameter a(j)

t , which is projection of at

Local information (a(j)
t , yt): Observed local function f (j) : A → IR not well-defined

Example: f (0, 0) = 0 and f (0, 1) = 1⇒ f (1)(0) = 0 and f (1)(0) = 1

a(1)
t

f (a(1)
t , a(2)

t )

a(2)
t ✓

a(1)
t

f (a(1)
t )

✗
Full communication is infeasible: Scalability, communication bandwidth, privacy
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Exploiting the iteration variable t
Construct well-behaved mapping using (a(j)

t , yt)

Explicitly model the iteration variable t

Time-varying local function f (j)t : (A,N)→ IR
f (0, 0) = 0, f (0, 1) = 1⇒ f (1)t (0, 1) = 0, f (1)t (0, 2) = 1

a(1)
t

f (1)t (a(1)
t , t)

t

Construct GP to model local time-varying f (j)t
using spatio-temporal kernel2

k (j)
t ((a, t), (a′, t ′)) = k (j)

S (a, a′)︸ ︷︷ ︸
Observables

· k (j)
T (t , t ′)︸ ︷︷ ︸

Unobservables

1 2 3 4 5

k (1)
S (a, a′) k (1)

T (t , t ′)

We interpret time t as a latent variable with a concrete physical interpretation
2Bogunovic et al., “Time-varying Gaussian process bandit optimization,” AISTATS 2016.
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Spatio-temporal kernel
Spatial part: Exploit smoothness of global reward function f ∈ Hk
Temporal part: How does rest of MAS behave if Agent j remains constant?

Example: 3-agent MAS without communication from Agent j ’s perspective

0 10 20 30 40 50

0
0.2

Cautiousness Exploration Convergence

Iteration t

R
ew

ar
d

Beginning/end: smoother sample paths (RBF kernel)

Midpoint: rougher sample paths (Matérn-12 kernel)

kT(t , t
′) = kRBF(t , t

′) + kW(t , t ′)kMa12(t , t
′)

kW(t , t ′) =
1

tend
min(t , t ′) ·min(tend − t , tend − t)

k W
(t
,t

′ )

0 10 20 30 40 50
0

10

20

30

40

50

t

t′

Towards safe control parameter tuning in distributed multi-agent systems 7/11
Abdullah Tokmak, T. B. Schön, D. Baumann abdullah.tokmak@aalto.fi
Aalto University December 11, 2025

mailto:abdullah.tokmak@aalto.fi


Re-interpreting the optimization problem
Safe (global) policy optimization problem

maxa∈AN f (a) subject to f (at) ≥ h, ∀t ≥ 1

⇓

Time-varying local proxy of safe policy optimization problem

maxa∈A f (j)t (a, t) subject to f (j)t (a(j)
t , t) ≥ h, ∀t ≥ 1,∀j ∈ [1, . . . ,N]

Safe BO is a sequential decision-making problem using GP posterior at iteration t

Single agent: Regression in spatial domain AN ⇒ at+1

MAS: Regression in spatial domain A, one-step extrapolation3 in t ⇒ a(j)
t+1

3S. Roberts et al., “Gaussian processes for time-series modelling,” Philos. Trans. R. Soc. A, 2013.
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Vehicle platooning simulation
Tune synchronization PI controller using
safe BO in 5-agent heterogenous MAS

Bi-directional nearest neighbor
communication
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Towards Safe parameter tuning in distributed MAS Outlook

Safe optimization problem
maxa∈AN f (a) subject to f (at) ≥ h

Proxy of safe optimization problem

maxa∈A f (j)t (a, t) subject to f (j)t (a(j)
t , t) ≥ h

Error using proxy instead of original optimization problem not quantified here

Heuristically, we derived (a(j)
t , t) = Π

(j)
t (at) and spatio-temporal kernel k (j)

t (a(j)
t , t)

Find suitable Π
(j)
t (at) and k (j)

t to minimize kernel discrepancy ϵ̄ such that

sup
a,a′∈AN

|k(a, a′)− k (j)
t (Π

(j)
t (a),Π(j)

t (a′)| ≤ ϵ̄.

With this, we can build confidence intervals between global reward function f and
local time-varying GP mean4 ⇒SAFEOPT-like safety guarantees

4C. Fiedler et al., “Practical and rigorous uncertainty bounds for Gaussian process regression, AAAI 2021.
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Conclusions Recap

Goal
Optimize control parameters in distributed MAS, ensuring safety and sample efficiency.

Contributions
Implictly model unobserved behavior by introducing
time as latent variable

Time-varying local interpretation of global static
reward function with custom spatio-temporal kernel

BO algorithm for parameter tuning in distributed MAS

Future work
Confidence intervals for safety guarantees
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