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Motivational example
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Introduction

Optimize control parameters of safety-critical real-world systems. I |

m Unknown black-box reward function f : A C R — R

m Control policy parameters a € A; parametrized policy

m Regularity: Function f member of RKHS Hj of kernel k with RKHS norm ||f||«
m Safety-critical real-world systems: Safety and sample-efficiency

Vanilla RL struggles with both sample-efficiency and safety guarantees. I
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Kernels and Gaussian processes (GPs)

m GPs to predict reward function f from samples with uncertainty quantification
m Atiteration t > 1: Control parameter a; € A, noisy reward y; := f(a;) + €
m Until iteration t > 1: ay.; = [a1,...,a]", vt = [V, ., ] "

m GPs characterized by kernel k, posterior mean p;, posterior standard deviation o

pi(a) = k(@) (Ki +nl) ' y1t
or(a) = /1 — k(@)T(K: + k) ~"ki(a)

m Notation: Regularization constant > 0, covariance matrix K;, covariance vector
ki(a) = [k(a1,a),...,k(ar, a)]", identity matrix /
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Theorem (Confidence intervals)'
Suppose:

m Sufficiently regular reward function f (RKHS norm)

m GP posterior with noisy observations and same kernel k
Then:

f(a) — e(a)| = |f(a) — k(@) T (Ki + nlk) " yaud]
< |ke(@) " (Ke + nh) el + k(@) T (Ke + nk) " eqd]

1 _
< [[fllxoe(a) + EGIth(Kf + k)~ er:004(2)

1 —_
= <”fHk + ne;r;t:tﬁ:t) Ut(a) \\ RKHS term + noise term

4

1 Chowdhury et al., “On kernelized multi-armed bandits,” ICML 2017.
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Safe Bayesian optimization (BO) with GPs

m Safety critical real-world system
m GPs: Confidence intervals = safety
= BO: Exploration/exploitation =- efficient maxac4 f(a) s.t. f(a;) > h, Vi > 1
m Episodic: Experiment O Parameter acquisition

SAFEOPT? (correct confidence intervals)

SAFEOPT? (wrong confidence intervals)

4 e art ---h : .
f —_— Safety violation
2 Confidence intervals

Reward

T T T T T T T T T
a a
2Y. Sui et al., “Safe exploration for optimization with Gaussian processes,” ICML 2015.
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Correctness of confidence intervals

1 +_
lf(a) — wi(a)] < (Hf“k + Ee;l—:t:tet> oi(a) \\ RKHS term + noise termJ

State of the art safe BO algorithms require:
m Guess B > ||f||x a priori
m Assume homoscedastic R sub-Gaussian noise

P, [|f(a) —u(a@)| < (B-l— %\/Iog det <:—7Kt + It> -2 Iog(y)) at(a)] >1—v

How can we have (i) more general noise model and (ii) estimate the RKHS norm? I
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Bounding observation noise with high probability

= R-sub-Gaussian: Family of distributions whose tail decay is at most A/(0, R?)
m Homoscedastic: The noise does not vary with the input a € A

Classi fe BO: Ob . . . Our assumption: Observation noise ¢; is
H assic sda et' .d Rser\l/)aéon NoISE ¢t 1S defined on a probability space, from which
omoscedastic and R-sub-Gaussian. we can sample.

m Our assumption unifies different noise models
m Generating samples from the distribution = statistical bounds
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PAC bounds via the scenario approach?®
m Data-driven decision making and uncertainty quantification tool
m Lete € Ebeunknownand ¢ € &,j € [1,...,m]bei.id. scenarios

min,cpra fo(X) st ge(x,€) <0

X* = argmin,cpa fo(X) st ge(x,€) <0,V €1, m]

PT[Ple € £ : ge(x*,€) 0] > 1] >1 -0 (M)vi(1 —v)mi

i

3Campi and Garatti, “Introduction to the scenario approach,” SIAM, 2018.
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Scenario approach to bound observation noise
m Upper-bound (unknown) observation noise: mingcr., & s.t. & > €
m Scenario program with discarded constraints:

&= _min & st & >|&;, V<€ Quantile(m,v,k) J
EzERZO

4

Pt >1: Pl < led]] > V] < & )

m Inductive conformal prediction yields exactly same guarantees*

= One-dimensional optimization problem, where risk is bounded by beta distribution
m_No separation of learning and validation needed

4O’Sullivan et al., “Bridging conformal prediction and scenario optimization,” CDC, 2025.
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Resulting confidence intervals
m For fixed iteration t: P"[t > > 1:Pfe < |er]] >v] <k
m lteration-dependent x; := 2t2 and Boole’s inequality for simulaneous bounds

B PPVEP [ < |eff] > V] S S0 PPt > 1P[e < |ef]] > V] S S5 ke =Y oy Z2 =k
1 T — i
|f(a) —,ut(a)| < Ifllx + —€4.4=t€1:t at(a) \\ RKHS term + noise term
n
< )\max(Et) L
< | IIfllx + THG:tHz ot(a) \\ deterministically
< )\max(Et) - . \ Lq s
= ||f||k+ THGHHZ at(a) \\ with high probability

v,
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Safe BO: Safety and optimality®

Theorem: Safe BO under general noise models
Suppose:
m Start exploration from safe (sub-optimal) policy parameter

m Execute safe BO with confidence intervals we derived using scenario approach

Then, with confidence 1 — &, the following holds with probability 1 — v:
m We find the reachable optimum after at most t* iterations
m We are safe at each iteration ¢t € [1, t*]

5Tokmak et al., “Safe Bayesian optimization across noise models via scenario programming,” IEEE L-CSS, 2026.
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RKHS norm assumption in safe BO

@)~ (@) < (84 ==E ) (e |

m RKHS norm bound B > ||f||x characterizes 1
“smoothness” of function unknown reward function f < 0+
m Upper bound for safety, tightness for practicality =1 e
= ltis unclear how to bound/guess RKHS norm of -2 —— e
unknown functions® 0 0.5 1

a

Instead of guessing B > ||f||« a priori, derive data-driven RKHS norm over estimation
B; > ||f||« with statistical guarantees.

6Tokma.k et al.,“Automatic nonlinear MPC approximation with closed-loop guarantees,” IEEE TAC, 2025.
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Random RKHS functions’-® pr—
—_
= Compute random RKHS functions 057 P
ptj, J € {1,...,m} with kernel k J
S O |
T
m Random RKHS functions p;; capture 0 0.5 1
the behavior of reward function f a
g 30
S 20
m Increasing sampling density: L% 0
T

4 6 8 10
||Pt,j“k

o
N

k= £l

pt:j’ Hpt»/

7Tokmak et al., “PACSBO: Probably appproximately correct safe Bayesian optimization,” SysDO, 2024.

8Tokmak et al., “Safe exploration in reproducing kernel Hilbert spaces,” AISTATS, 2025.
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Scenario approach for RKHS norm estimation
m Assume: Reward f and random RKHS functions p; ; are from same probability space
® Implementation: p; j(x) = ZL ajk(xi, x), where «; and x; are random
m Mapping «;, x; to RKHS norms is deterministic and measurable
= RKHS norms ||f||x and ||p: ||« are from the same induced probability space

Bmﬂi@n B: st B:i > |ptjllk,Vj € Quantile(m,v, k) \\ convex optimization
t€R>0

4
PP[P[f € He: B > ||fllk] >1—v]>1 -k \\ RKHS norm over-estimation

v,

fe[Prelf € He:|f(a) — pe(a)] < (Bt +noise)or(a)] > 1 —v] > 1~k \\ conf. int.

4
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Local interpretation of the RKHS norm

m Safe exploration for optimization: Restricted to sub-space of domain
m Exploit local “smoothness” to allow for more optimistic exploration

]Ik = 0.16

fillx =0.15 2|k = 10.13

0 0.25 0.5 0.75

m Adaptive interpretation of locality: sub-domains around each sample
m Significantly more scalable through separate discretization in sub-domains
17/26
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Numerical experiment

Our algorithm SAFEOPT (B; > ||f|x)  SAFEOPT (B < ||f|[x)

Samples
Reward function
- — — Safety threshold

4 ¢ Starting sample
- I

I
0 0.5

—
o
o
()]
—
o
o
o
—

a a a
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Franka simulator (initial policy)

m Operational space impedance controller K for a set-point tracking task

m We obtain K from solving LQR problem and tune entries in Q and R

m Reward function encourages reacing target quickly with small inputs

m Constraint function requires that the distance to the target descreases sufficiently
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Franka simulator (final policy)

m Operational space impedance controller K for a set-point tracking task

m We obtain K from solving LQR problem and tune entries in Q and R

m Reward function encourages reacing target quickly with small inputs

m Constraint function requires that the distance to the target descreases sufficiently
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Motivational example revisited
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Motivational example: Final policy
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Frequentist vs. Bayesian viewpoints

f € Hg
IP¢ probability mass §
m Worst case/agnostic view on f m RKHS norm estimation = P over f
m P, is randomness over noise m Impossible: P¢[safety violation|f = f] < ¢
m P [safety violation] < § is robust w.r.t f m PP ¢[safety violation] < §, P == P ® Py

Although associated function spaces similar, the resulting guarantees are different! J
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A Bayesian view on uncertainty tubes
Regularity assumption with RKHS norm estimation
Asm. 1: Reward f is a member of the RKHS of kernel k

Asm. 2: Reward f and random RKHS functions p; ; are i.i.d. samples of same prob. space

Can we work only under Assumption 2 and drop Assumption 1?

o |t feai Pt
> 01 W*Q
-2
(5 0[2 014 5 0[6 0i8 1‘

m Bounds seem tighter in a clean
Bayesian setting

m Guarantees based on
compression, which
generalizes scenario theory®

9Campi and Garatti, “Compression, generalization and learn-

ing,” JMLR, 2023.
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Future work [ Outlook |

Near-term perspectives
m Overlooked applications of safe Bayesian optimization

m Optimizing radio resource management (Nokia Bell Labs)
m Safe BO with noise oracles from radar data (Finnish industrial partners)
m Experiment design in quantum variational algorithms

m Safe control parameter tuning in distributed multi-agent systems

m Bayesian confidence tube via scenario programming (with T. Karvonen, S. Garatti)
Long-term perspectives

m Can we have a more sophisticated definition of safety?

m Is the complete model-free approach too conservative?
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Goal |
Safe and sample-efficient control policy parameter optimization.

Core contributions
RKHS norm estimation and general noise models

Integration into safe BO algorithms for parameter tuning

Selected works
A. Tokmak, T. B. Schon, D. Baumann, “PACSBO: Probably approximately correct safe Bayesian
optimization,” Syposium on Systems Theory in Data and Optimization, 2024.
A. Tokmak, K. Krishnan, T. B. Schén, D. Baumann, “Safe exploration in reproducing kernel Hilbert
spaces,” International Conference on Artificial Intelligence and Statistics, 2025.
A. Tokmak, T. B. Schén, D. Baumann, “Safe Bayesian optimization across noise models via scenario
programming,” IEEE Control Systems Letters, 2026.
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